
Python
(a crash course)

Pedro Barahona

2019 / 20

Introduction

• This introductory (crash) course to Python is aimed at students of master
programmes that require some programming skills in this language, and
accept students with various backgrounds.

• This “hands on” course uses the Anaconda software, namely its Spyder
IDE, that should be downloaded and installed by the students from

• https://www.anaconda.com/distribution/

• More information can be obtained from several text books, namely

• Allen B. Downey. Think Python: How to Think Like a Computer Scientist.
§ http://greenteapress.com/wp/think-python-2e/

• John V. Guttag. Introduction to Computation and Programming Using
Python, MIT PRESS, 2016.
§ https://mitpress.mit.edu/books/introduction-computation-and-programming-using-python-second-edition

September 2019 Python: A Crash Course 2

https://www.anaconda.com/distribution/
http://greenteapress.com/wp/think-python-2e/
https://mitpress.mit.edu/books/introduction-computation-and-programming-using-python-second-edition

Spyder

• The Spyder IDE should be configured to show 3 windows:
Editor, File Explorer and Console

September 2019 Python: A Crash Course 3

Spyder

• The Console may be used as a simple calculator, using Python
instructions.

September 2019 Python: A Crash Course 4

Python – Basic Types

• Python implements several basic types namely
§ int e.g. 1578

§ float e.g. 24.57

§ bool e.g. True

§ char e.g. "c”

• Elements with these types can be used in more complex data
structures, such as lists and strings.

September 2019 Python: A Crash Course 5

Python – Assignment

• A programme is a sequence of instructions. The most basic
instruction is the assignment

var = expression

• That assigns to variable var, the value of the expression.

• Expressions can be obtained from built-in operators with the usual
precedence and parentheses

x = (2 + y) * 4

• Expressions may also use functions, either built-in or user defined,

x = xpto(a, 5)

September 2019 Python: A Crash Course 6

Python – Libraries

• Many functions are available in specialised libraries Possibly
the most used library is the math library that implements a
number of useful mathematical functions.

• Libraries must be imported prior to their use, as shown

September 2019 Python: A Crash Course 7

In : import math as m
In : x = m.sqrt(25)

Out: 5.0

Python – Libraries

• The functions supported by the libraries can be obtained with
the command dir.

September 2019 Python: A Crash Course 8

In : import math as m
In : dir(m)
Out: ['__doc__',
'__file__’,

.....
'__spec__',
'acos',
'acosh',
'asin’,

.....
'trunc']

Python – Libraries

• Other useful libraries are:

§ NumPy – Supports N-dimensional arrays, and functions
such as Iteration, Fourier Transfom, linear algebra and
financial functions.

§ SciPy – supports scientific calculations such as integration,
optimization and sparse eigenvalues.

• More on useful libraries in

§ https://linuxhint.com/10_best_math_libraries_python/

September 2019 Python: A Crash Course 9

Python – Functions

• Functions in Python are defined with the following syntax:

Although optional, the documentation is very useful to elucidate
the purpose of the function and is available with the command

• help(functionName)

September 2019 Python: A Crash Course 10

def FunctionName(parameters):
""" Function documentation
"""
Instruction block
return [None | result(s)]

Python – Functions

• The parameters are input for the function and are separated by
commas.

• (If there are none, the function is a constant.)
• The instruction block is a set of instructions, adequately indented

and commented, that manipulate the input parameters and
internal variables and possibly yield some result(s).

September 2019 Python: A Crash Course 11

def FunctionName(parameters):
""" function documentation
"""
instruction block
return [None | result(s)]

Python – Functions

• The value of the function is specified with the return
instruction.

• A function might return no results and be used only to
produce some side effect.

• For example function print() does not return any value, but
only shows the results in the console.

September 2019 Python: A Crash Course 12

def FunctionName(parameters):
""" function documentation
"""
instruction block
return [None | result(s)]

Python – Functions

• Example:

• The function introduces a local variable c, which is not seen
outside the function.

• The indentation of the instruction block is mandatory.

September 2019 Python: A Crash Course 13

def soma(a, b):
"""
this function returns the sum of a and b
"""
c = a + b # performs the sum
return c

Functions - Spyder

• Functions should be written in a text file with extension .py, and
become visible by making their directory as the current directory.

September 2019 Python: A Crash Course 14

• Selecting the current
directory is done in the
File Explorer window of
Spyder.

• Files can be edited in
the Editor window of
Spyder.

Functions - Spyder

• Once they are edited and in the current directory, function should
be loaded so that they can be called from the console.

• Loading can be done with the command runfile(filename) or simply
by clicking on the run icon.

September 2019 Python: A Crash Course 15

Functions - Spyder

• Once loaded a function can be called from the console,
as shown below.

September 2019 Python: A Crash Course 16

Python – Function Exercise

• Exercise 1a: Write a functions that implement the logistics
(sigmoid) function, with parameters L, k and x0, for any real
value x.

September 2019 Python: A Crash Course 17

Python – Function Exercise

• Exercise 1b: Write a functions that implement the Gauss (bell
shaped) function with parameters µ and s for any real x.

September 2019 Python: A Crash Course 18

Python – Lists

• Python provides the data structure list, to allow the organization of
collection of any type of objects, not only of simple data types (e.g.
Int or float) but also other more complex objects, such as lists.

• Instances (objects) of this type of data structure (class) are typically
created with simple enumeration. For example,

• L = [1,2,3,4]

• M = [1, "a", [1,2,3]]

• S = ["a", "b", "c"]

• The last case, a list of characters is usually created as as string,

• S = "abcd"

September 2019 Python: A Crash Course 19

Python – Lists

• Before using a list, it is convenient to initialise it, which can be done
with the repetition instruction.

• Lists are ”mutable” objects, in that they can be appended with
extra elements, extended with other lists, or have elements
removed.

• Methods for list objects are available to perform these changes.

September 2019 Python: A Crash Course 20

In : L = [0]* 5
In : L
Out: [0,0,0,0,0]
In : [None]*3
In : [None, None, None]

Python – Lists

• In general, existing methods available for an object may be
consulted with the dir command.

September 2019 Python: A Crash Course 21

In : L = [0]* 5
In : dir(L)
Out:
['__add__’,

.....
'__len__’,
.....

'append’,
'copy’,
'extend’,
.....

'remove',
'reverse',
'sort']

Python – Lists

• Some examples:

September 2019 Python: A Crash Course 22

In : L = [1,2,3,4]
In : M = [6,8,7,8]
In : L.append(5)
In : L
Out: L = [1,2,3,4,5]
In : L.extend(M)
In : L
Out: L = [1,2,3,4,5,6,8,7,8]
In : L.remove(8)
In : L
Out: L = [1,2,3,4,5,6,7,8]

Python – Lists

• Lists are not sets, in that elements of the list have a position (index).

• Indices in a list of length n, range from 0 to n-1. Elements of a list
can be accessed by means of their index, either positive (0 to n-1,
from left to right) or negative (from -1 to –n) from right to left.

• The length of a list can be obtained with method len.

September 2019 Python: A Crash Course 23

In : L = [1,2,3,4]
In : len(L)
Out: 4
In : L.__len__()
Out: 4
In : L[2]
Out: 3
In : x = L[-3]
In : x
Out: 2

Python – Lists

• Quite often, it is convenient to obtain not a single element but a
slice of the list, specified with notation

[start : end : step]

• The slice is composed of all elements starting with that of index
start, up to (and excluding) that with index end, spaced by an
optional step (default is 1)

September 2019 Python: A Crash Course 24

In : L = [1,2,3,4,5,6]
In : L[2:5]
Out: [3,4,5]
In : L[0:5:2]
Out: [1,3,5]
In : L[-1,3,-1]
Out: [6,5]

Python – Lists

• Lists are mutable objects in that their state may change.

• Not only the lists can be extended and “shrinked” as seen before,
but also their elements may change.

September 2019 Python: A Crash Course 25

In : L = [1,2,3,4,5,6]
In : L[3] = 9
In : L
Out: [1,2,3,9,5,6]

Python – Tuples

• Tuples are similar to lists. They can be created by enumeration with
brackets notation.

• Tuples are immutable objects. Once created they can not be
changed.

• Methods available to tuple objects can be obtained with the
command dir.

September 2019 Python: A Crash Course 26

In : T = (1,2,3,4,5,6)
In : T[1]
Out: 2
Out: T[1] = 9
TypeError: 'tuple' object does not support item assignment

Python – Sets

• Sets are also similar to lists, but
a. their elements are not accessible by indices.
b. they do not take repeated elements.

§ Methods available to set objects can be obtained with the
command dir.

§ Sets are useful to implement dictionaries (later).
September 2019 Python: A Crash Course 27

In : S = {1,2,3,1}
In : S
Out: {1,2,3}
Out: S[1]
TypeError: 'set' object does not support indexing

Python – Matrices

• Matrices (and higher order arrays) can be implemented as lists of
lists. Their elements can be reached as before.

• Although all matrix operations can be implemented with nested
lists, library NumPy is very useful for linear algebra oerations on
vectors and arrays (later).

September 2019 Python: A Crash Course 28

In : M = [[1,2,3,4],[4,5,6,7]]
In : len(M) # number of rows
Out: 2
In : len(M[0]) # number of columns
Out: 4
In: M[1][2]

Out: 6

Python – Conditional Execution (IF)

• As in all imperative languages a block of instructions may be
executed conditional, i.e. if a certain condition is met. The syntax in
Python of the IF instruction is

• Note: Both the elif and the else parts of the instruction are
optional.

September 2019 Python: A Crash Course 29

if condition_1:
instructions block

elif condition_2:
instructions block

...
elif condition_n:

instructions block
else

instructions block

Python IF - Conditions

• A condition in Python is simply a Boolean expression, i.e. that
evaluates to True or False.

• Simple conditions are usually obtained with the relational operators
applied to (numerical) expressions

" == ", "!= ", " > ", ">= ", " < ", "<= "

September 2019 Python: A Crash Course 30

In : a = -3
In : if a > 0:
..: c = a
..: else:
..: c = -a

In : c
Out: 3

Python IF - Conditions

• More complex conditions may be formed with Boolean expressions
obtained with Boolean operators, conveniently parenthesised

" and ", ”or ", " not "

September 2019 Python: A Crash Course 31

In : L = [1,2,3,4]
In : if len(L) > 6 and L[6] > 0
..: c = L[6]
..: else:
..: c = -1

In : c
Out: 3

IF – Roots of 2nd degree Equation

September 2019 Python: A Crash Course 32

def roots_2(a,b,c):
""" The function return the roots of the equation ax**2 + bx + c = 0
"""
d = b**2 – 4 * a * c
if d < 0:

return []
elif d == 0:

return [-b / (2*a)]
else:

return [-b + m.sqrt(d)/ (2*a), \ # line continuation
-b - m.sqrt(d)/ (2*a)]

IF – Roots of 2nd degree Equation

• The function just defined should be tested, for all possible
conditions, before it is used elsewhere

• Note: UNITARY TESTS, as above, should be done in all functions
that are defined by the user, before being used in more complex
programs.

September 2019 Python: A Crash Course 33

In : roots_2(1, 0, 4)
Out: []
In : roots_2(1, 0, -4)
Out: [2.0, -2.0]
In : roots_2(1, 1, -6)
Out: [-2.0, 3.0]

Python – IF Exercise

Exercise 2:

• Specify a function that checks the type of triangle is obtained
with 3 segments of given lengths a,b, and c.

• The signature of the function should be

def triangle(a,b,c):

• The value that the function returns should be:
• 3: equilateral triangle
• 2: isosceles triangle
• 1: scalene triangle
• 0: not a triangle

September 2019 Python: A Crash Course 34

Python – Repeated Execution (FOR)

• In virtually all (non trivial) programs a block of instructions
must be executed repeatedly, usually with some minor
changes in each execution.

• The FOR instruction achieves this behaviour. Its syntax is

• Every execution of the FOR block of instructions is executed
with a different value of variable var.

September 2019 Python: A Crash Course 35

for var in sequence:
instructions block

Python – Repeated Execution (FOR)

• Sequences can be lists, or tuples or sets as defined before.

• They may also be ranges with syntax similar to that used in
slices of lists

range([start ,end ,step)

• where

• 2 arguments: start and end. By default, step = 1.

• 1 argument: end. By default, start = 0 and step = 1.

September 2019 Python: A Crash Course 36

for var in sequence:
instructions block

Python – Example FOR

Example: Obtain the sum of the elements of a list

• The first formulation iterates on the elements of the list.

• If the list has no elements, no iterations are performed and
the function returns 0.

September 2019 Python: A Crash Course 37

def sum_list_1(L):
""" The function returns the sum of the elements of list L
"""
s = 0
for v in L:

s = s + v
return s

Python – Example FOR

Example: Obtain the sum of the elements of a list
• The second formulation iterates on the indices of the list.

• Note the use of the length of the list. As before, if the list is
empty (with length 0) the function returns 0.

September 2019 Python: A Crash Course 38

def sum_list_2(L):
""" The function returns the sum of the elements of list L
"""
s = 0
for i in range(len(L)):

s = s + L[i]
return s

Python – Lists by comprehension

• The concept of iteration can also be used to create a list by
comprehension, as shown in the examples.

September 2019 Python: A Crash Course 39

In : L = [a**2 for a in range(4)]
In : L
Out: [0, 1, 4, 9]
Out: M = [m.sqrt(i) for i in [0,1,4,9,16]]
In : M
Out: [0.0, 1.0, 2.0, 3.0, 4.0]
In : list(range(5)
Out: [0,1,2,3,4]

Python – FOR Exercises

Exercise 3a:

• Specify a function that returns the numbers of the Fibonacci series:
1, 1, 2, 3, 5, 8, …

• The signature of the function should be

def fibo(n):

• The function returns the nth number of the series.

• For example fibo(6) = 8

September 2019 Python: A Crash Course 40

Python – FOR Exercises

Exercise 3b:

• Specify a function that obtains the sum of the powers p of the first n

integers (starting at 1).

• The signature of the function should be

def sum_powers(n, p):

• The function returns the sum of the p-powers of the n first natural
numbers.

1p + 2p+ … +np

September 2019 Python: A Crash Course 41

Python – FOR Exercises

Exercise 3c:

• Specify a function that returns the scalar product of 2 arrays
(assume they have the same size).

• The signature of the function should be

def scalar_prd(A, B):

• For example, if the function is called with arrays

M = [1,2,3,4] and N = [8,7,6,5]

it should return the value

1*8+2*7+3*6+4*5 = 60

September 2019 Python: A Crash Course 42

Python – FOR Exercises

Exercise 3d:

• Specify a function that returns the transpose of a matrix
implemented as a list of lists.

• The signature of the function should be

def transpose(M):

• For example, if the function is called with matrix

[[1,2,3,4] , [5,6,7,8]]

it should return matrix

[[1,5] , [2,6] , [3,7] , [4,8]]

September 2019 Python: A Crash Course 43

Python – FOR Exercises

Exercise 3e:
• Specify a function that returns the product of 2 matrices

implemented as lists of lists (with compatible dimensions).
• The signature of the function should be

def mat_prod(M, N):
[[1,2,3,4] , [5,6,7,8]]

• For example, if the function is called with matrices

M = [[1,2,3] , [4,5,6]] and N = [[1,2,3,4] , [9,8,7,6] , [0,1,2,3]]
it should return matrix

[[19, 21, 23, 25],[49, 54, 59, 64]]

September 2019 Python: A Crash Course 44

NumPy – Array Library

• As mentioned earlier linear algebra is supported by library
NumPy. The library should be imported (usually as np) and its
classes consulted with the dir() command. Examples:

September 2019 Python: A Crash Course 45

In: import numpy as np
In: M = np.array([[1,2,3],[4,5,6]])
In: np.transpose(M)

Out:
array([[1, 4],

[2, 5],
[3, 6]])

In: N = np.array([[1,2,3,4],[9,8,7,6] [0,1,2,3]])
In: Q = np.matmul(M,N)

Out:
array([[19, 21, 23, 25],

[49, 54, 59, 64]])

Python – Repeated Execution (WHILE)

• In some cases, it is not known how many times the block of
instructions should be iterated. Only that it should do so while a
certain condition is verified.

• The WHILE instruction achieves this behaviour. Its syntax is

• Of course, the instructions in the block should change the state of
the condition, eventually making it False.

• If the condition is False before the instruction, then no instance of
the block is executed.

September 2019 Python: A Crash Course 46

while condition:
instructions block

Python – Repeated Execution (WHILE)

• Note: Care must be taken so that the condition eventually become
false, otherwise the program enters an infinite loop.

• In this case, execution may be aborted by clicking on the suspend
icon

September 2019 Python: A Crash Course 47

Python – Repeated Execution (WHILE)

• Note: Care must be taken so that the condition eventually become
false, otherwise the program enters an infinite loop.

• In this case, execution may be aborted by clicking on the suspend
icon

September 2019 Python: A Crash Course 48

Python – Repeated Execution (WHILE)

• Example: To find an element in a list, computation should stop
as soon as the element is found.

September 2019 Python: A Crash Course 49

def find_in_list(x,L):
""" The function returns the index of the element x, if it belongs to
the list. Otherwise returns -1
"""
i = 0
while i < len(L) and L[i] != x:

i = i + 1
if i >= len(L):

return -1
else:

return i

Python – Repeated Execution (WHILE)

• In fact, the condition signals an interrupt to the cycle. This
interruption may often be achieved by using the return
instruction when the condition is met.

• For example:

September 2019 Python: A Crash Course 50

def find_in_list_2(x,L):
""" The function returns the index of the element x, if it belongs to
the list. Otherwise returns -1
"""
for i in range(len(L)):

if L[i] == x:
return i

return -1

Python – WHILE Exercises

Exercise 4a:

• Specify a function that returns the number of items (representing
weights) of a list that are necessary to reach a certain weigth w. It
returns a pair indicating the number of items used (0 if w is not
achieved), and the weight of the selected items.

• The signature of the function should be

def select_items(L, w):

• Let L = [38, 25, 19, 11, 9]. Now if the function is called
§ with w = 80 it should return the pair (3, 82).
§ with w = 200 it should return the pair (0, 102).

September 2019 Python: A Crash Course 51

Python – WHILE Exercises

Exercise 4b:

• Specify a function that returns the sum of the series

1, 1/22, 1/32, 1/42, 1/52, …

with a precision p (i.e. the first neglected element is less than p).

The signature of the function should be

def sum_inv_squares(p):

• Specify a similar function that returns the sum of the series

1, -1/2, +1/3, -1/4, +1/5, …

with signature

def alternated_harmonic(p):

September 2019 Python: A Crash Course 52

