
Python
(a crash course)

Pedro Barahona

2019 / 20

Graphics with Python

• Several types of graphics (line graphs, pie graphs, histograms, …) and
images can be drawn with Python, namely through the library matplotlib.

• Here we will only address line graphs, drawn with the following steps

1. Clear all previous graph draws

2. Fill a vector x with the x-coordinate values.
3. Fill one or more vectors with the y-coordinate values.

4. Use function plot(x, y, fmt) to draw each of the lines of the graph.

5. Define the title of the graph, axes and legend of the graph (all optional)

6. Show and save the graph in a file (optional)

• The following example illustrates these steps

September 2019 Python: A Crash Course 2

Graphics with Python

September 2019 Python: A Crash Course 3

import math as m
import matplotlib.pyplot as plt

P = list(range(101)) # a list of 101 points
X = [a/100.0 for a in P] # x- coordinates
S = [m.sin(x*2*m.pi) for x in X] # sine values
C = [m.cos(x*2*m.pi) for x in X] # cosine values
plt.plot(X,S,'g-.') # sine line format
plt.plot(X,C,'r*') # cosine line format
plt.title('trigonometric functions') # title
plt.legend(['sin', 'cos']) # legend
plt.xlabel('x values') # x-axis label
plt.ylabel('y values') # y-axis label
plt.show() # draw the graph
plt.savefig('trigo.png') # save the graph

Graphics with Python

• There are many possibilities available to format the graphs. For the style of
the lines a number of options can be used in the 3rd parameter of the plot
function:

§ Colours: ‘b’; blue, ‘g’: green, ‘r’: red, ‘y’: yellow, ‘k’: black

§ Markers: ‘.’: point, ‘o’: circle, ‘+’: plus, ‘x’-times, ‘*’: star

§ Styles: ‘-’ : solid, ‘--’: dotted, ‘:’ : dashed, ‘-.’ : dash-dot

see help(plt.plot) for more information on formats

• The graphs can be stored in a file (usually with a png or pdf extension) fror
further use.

September 2019 Python: A Crash Course 4

Python – Exercise on Graphics

• Exercise 5: Write a function to draw the graphs of a sigmoid and a
gauss curve, in the interval x ∊ [-4 .. 4].

• Use the signature def sig_gauss_graphics():

• Note : use the definition of the functions used earlier to get a graph
similar to

September 2019 Python: A Crash Course 5

Dictionaries in Python

• Quite often, data must be grouped together so that access is made
not through na index (like in arrays) but through a key, i.e. a string.

Example: Each element of the periodic table can be associated with:

§ A string, symbQ, with its chemical symbol;

§ An integer, nAtom, with its atomic number;

• In Python, data can be grouped in data type dictionary (type dict),
which is a set of key:value pairs.

§ The key may be a string, int, float or boolean.

§ The value can be of any type.

September 2019 Python: A Crash Course 6

Dictionaries - Creation

• In Python a dictionary is na object of type dict, created with the
following

Syntax:

variable = { keyName1 : valOfKey1,

....
keyName1 : valOfKeyN}

• Example:

September 2019 Python: A Crash Course 7

In : actinium = {
...: ‘symbQ' : 'Ac’,
...: 'nAtom' : 89}
In : actinium
Out: {‘symbQ': 'Ac', 'nAtom': 89}

Dictionaries – Key Values

• The value of the keys in a dictionary can be accessed (and changed),
using .get method):

variable.get(KeyName)

Or by an equivalent syntax
variable[KeyName]

September 2019 Python: A Crash Course 8

In : lithium = {
...: ’symbQ' : 'Li',
...: 'nAtom' : None}
In : lithium['nAtom']
In : lithium['nAtom’] = 3
In : lithium['nAtom']
Out: 3
In : lithium.get(‘symbQ’)
Out: 'Li'
In : lithium
Out: {‘symbQ': 'Li', 'nAtom': 3}

Dictionaries – Keys Addition

• Once a dictionary is created, additional key:value pairs can be included
through method .update

variable.update(KeyName)

Example:

• Add the atomic mass to an atom description.

September 2019 Python: A Crash Course 9

In : lithium
Out: {‘symbQ': 'Li', 'nAtom': 3}
In : lithium.update({'mAtom': 6.941})
In : lithium
Out: {'simbQ': 'Li', 'nAtom': 3, 'mAtom': 6.941}

Dictionaries – Keys Elimination

• Similarly, key:value pairs can be eliminated from a dictionary though
method .pop

variable.pop(KeyName)

Example:

• Eliminate the atomic mass from na atom description.

September 2019 Python: A Crash Course 10

In : lithium
Out: {‘symbQ': 'Li', 'nAtom': 3, 'mAtom': 6.941}
In : lithium.pop('mAtom')
Out: 6.941
In : lithium
Out: {‘symbQ': 'Li', 'nAtom': 3}

Dictionaries – What Keys?

• To know the keys belonging to a dictionary, the method .keys can be
used

variable.keys()

• In particular, it may also be used to check whether some key does exists
key in variable.keys()

Example:

• Attributes associated to a chemical element

September 2019 Python: A Crash Course 11

In : lithium = {
...: ’symbQ' : 'Li',
...: 'nAtom' : None}
In : lithium.keys()
In : dict_keys([‘symbQ', 'nAtom’])
In : 'nAtom’ in lithium.keys()
Out: True

Dictionaries – Key Iteration

• The different attributes of a dictionary can be iterated (for example in a
FOR loop) through their keys as in

for key in variable.keys()
Or, with the simplified syntax:

for key in variable
• Exemplo:

September 2019 Python: A Crash Course 12

In : lithium
Out: {‘symbQ': 'Li', 'nAtom': 3}
In : for key in lí lithium.keys():
...: print(key)
symbQ
nAtom
In : for key in lithium :
...: print(key)
symbQ
nAtom

Strings

• Before addressing the reading and writing of texto files it is
convenient to overview the data type string (str).

• Strings are just sequences of characters (usually implemented
through their representations in a code scheme such as ASCII or
UTF.

• Strings are denoted with framing quotes or double quotes.
• They may include visible characters (letters, upper or lower, digits,

punctuation symbols) or invisible symbols such as spaces, or tabs
and end-of-line characters, denoted by escape sequences \t and \n,
respectively).

• Like lists, their size may be obtained with method len() and
individual characters accessed by their index in the string.

September 2019 Python: A Crash Course 13

String Splitting

• For example

September 2019 Python: A Crash Course 14

In : s = "This is a string with 225 characters of which:\n\t11
characters which are digits;\n\t1 characters that are upper case
;\n\t165 characters that are lower case ;\n\t6 characters that
are punctuation marks; and\n\t42 whitespace characters"
In : s
'This is a string with 225 characters of which:\n\t11 characters
which are digits;\n\t1 characters that are upper case;\n\t165
characters that are lower case;\n\t6 characters that are
punctuation marks; and\n\t42 whitespace characters'
In : print(s)
This is a string with 223 characters of which:

11 characters which are digits;
1 characters that are upper case;
165 characters that are lower case;
6 characters that are punctuation marks; and
40 whitespace characters

String Splitting

• Method split, as in
str.split(sep)

splits string str by its separator na returns a list witheach of the
sub strings.

• A separator is also a string, that does not appear in sub-strings
• Usual separators are : ',', '; ', ' ', '\t'

September 2019 Python: A Crash Course 15

In : s = '113 4.5 7.9 2019’
In : s.split(' ')
Out: ['113', '4.5', '7.9', '2019']
In : t = '113; 4.5; 7.9; 2019'
In : s.split(‘; ')
Out: ['113', '4.5', '7.9', '2019']

String Stripping

• Method strip, as in

str.strip()

returns a string without leading and trailing white spaces (i.e.
spaces, end of line, tabs)..

• Note that whitespaces inside the string are not removed.

September 2019 Python: A Crash Course 16

In : s = ' 113\t4.5\t7.9\t2019. \n '
In : s.strip(' ')
Out: '113\t4.5\t7.9\t2019.'

Types of String

Other methods return the type of a string.

• isalnum()
§ True if the string is an alpha-numeric string, False otherwise.
§ A string is alpha-numeric if all characters in the string are alpha-

numeric and there is at least one character in the string.

• isalpha()
§ True if the string is an alphabetic string, False otherwise.
§ A string is alphabetic if all characters in the string are alphabetic

and there is at least one character in the string.

• isnumeric()
§ True if the string is a numeric string, False otherwise.
§ A string is numeric if all characters in the string are numeric and

there is at least one character in the string.

September 2019 Python: A Crash Course 17

Types of String

Other methods return the type of a string.

• isdecimal()
§ True if the string is a decimal string, False otherwise.
§ A string is a decimal string if all characters in the string are

decimal and there is at least one character in the string.

• isspace()
§ True if the string is whitespace, False otherwise.
§ Spaces, tabs and newlines are considered spaces..

• isprintable ()
§ True if the string is printable, False otherwise.
§ Tabs and newlines are not printable.

More info with help(str)

September 2019 Python: A Crash Course 18

Python – Exercise on Strings

• Exercise 6b:

Check whether string

s = "This is a string with 225 characters of which:\n\t11 characters
which are digits;\n\t1 characters that are upper case;\n\t165
characters that are lower case;\n\t6 characters that are punctuation
marks; and\n\t42 whitespace characters”

has indeed the number of the different character types that it
indicates (suggestion: Use a dictionary).

• Exercise 6b: Obtain the frequency of occurrences of the
chaacters appearing in the string (again, use a dictionary).

September 2019 Python: A Crash Course 19

Text Files with Python

• To read from or write to a text file, it is necessary to open it, in the
corresponding mode.

• If successful, this operation returns an object identifying the file that is to
be read or written. Reading and writing, sequentially, are performed to
calls of methods of these objects.

• (We will assume that the file is in the current directory, otherwise it is
necessary to set a path to it.)

• Once the read / write operations are completed, the file shoul be closed,
again through a call to a method of the file identifier object.

September 2019 Python: A Crash Course 20

Opening Text Files

• The instruction
fich = open(FileName, mode)

opens a file with name “Filename” and mode:

§ Reading: if mode = ‘r’
§ Writing: if mode = ‘w’

• The function returns an object, fich, that should be used for all
subsequent accesses to the file.

• Of course, a file that does not exist cannot be read. Reading files that
do not exist raise error

September 2019 Python: A Crash Course 21

In : x = fopen(’texto.pdf’) # the file does not exist
FileNotFoundError: [Errno 2] No such file or directory:

'texto.pdf'

Closing Text Files

• The method close, effectively closes the file
fich.close()

• Again, a file that is not opened, or has already been closed, can not be
closed.

September 2019 Python: A Crash Course 22

In : fich = open(teste.txt, 'r')
In : ... # reading the file
In : fich.close()
In : fichX.close()
NameError: name 'fichX' is not defined

Writting in Text Files

• Function (method) write writes a string in a text file

fich.write(string)

§ It returns the number of characters written, in the file.

• Some special format characters:
§ \n new line
§ \t horizontal tab

September 2019 Python: A Crash Course 23

In : x = open('example.txt', 'w')
In : x.write('This is the first line\n and this is the second\n')
Out[12]: 46
In : x.write('fim\n')
Out[12]: 4
In : x.close()

This is the first line
and this is the second
end

example.txt

Reading from Text Files [1]

• Function (method) read
read()

reads all the text file (from the current position until the end) and
returns a string with all the characters that were read (including
the new lines).
• Reading beyond the end of returns

an empty string.

September 2019 Python: A Crash Course 24

In : a = open('example.txt')
In : a.read()
Out: 'This is the first line\nand this is the second\nend\n'
In : a.read()
Out: ''
In : a.close()

This is the first line
and this is the second
end

example.txt

Reading from Text Files [2]

• Function (method) readlines
readlines()

reads all the text file (from the current position until the end) and
returns a list of strings with all characters read.

• Reading beyond the end of file returns an empty string
• The new lines are returned in the strings.

September 2019 Python: A Crash Course 25

In : a = open('example.txt')
In : a.readlines()
Out: ['This is the first line\n', 'and this is the second\n', 'end\n']
In : a.readlines()
Out: []
In : a.close()

This is the first line
and this is the second
end

example.txt

Reading from Text Files [3]

• Function (method) readline
readline()

reads one line of the text file (from the current position until the
new line) and returns a strings with all characters read.

• Reading beyond the end of file returns an empty string
• The new lines are returned in the strings.

September 2019 Python: A Crash Course 26

In : a = open('example.txt')
In : a.readline()
Out: 'This is the first line\n'
In : a.readline()
Out: 'and this is the second\n'
In : a.readline()
Out: 'end\n'
In : a.close()

This is the first line
and this is the second
end

example.txt

Reading from Text Files [4]

• The different methods can be used together.

§ Notice the current position!

September 2019 Python: A Crash Course 27

In : a = open('example.txt')
In : a.readline()
Out: 'This is the first line\n'
In : a.readlines()
Out: ['and this is the second\n', 'end\n']
In : a.readlines()
Out: []
In : a.read()
Out: ''
In : a.close()

This is the first line
and this is the second
end

example.txt

Reading from Text Files [5]

• Notice that Reading text files return strings, even when they
“represent” numbers. To obtain the numbers, strings must be
converted into numbers.

September 2019 Python: A Crash Course 28

In : a = open(‘numbers.txt')
In : line = a.readline()
In : line
Out: ' 25\t34.7\n'
In : line.strip().split('\t’)
In : line
Out: ['25', '34.7']
In : line[0] = int(line[0])
In : line[1] = float(line[1])
In : line
Out: [25, 35]

25 34.7
…

numbers.txt

Python – Exercise on Text Files

• Exercise 7a:
Read a text file (dimacs.txt) representing a labelled undirected graph encoded
with the DIMACS format, where

September 2019 Python: A Crash Course 29

• The first line has two integers (separated by spaces)
representing the number of nodes and number of
arcs, respectively.

• the subsequent lines, one for each arc, have 3
numbers (separated by spaces):
• the first two, are integers and denote the the

nodes of the arc;
• the third number, (an integer or a float)

represent the label of the arc (e.g. a length, or a
cost).

5 8
1 2 5
1 3 43
1 4 95
1 5 22
2 3 68
2 5 35
3 4 39
3 5 90

dimacs.txt

• Obtain the adjacency matrix of the graph (a matrix M, where M[i][j]
denotes the label of the arc (i,j).

Python – Exercise on Text Files

• Exercise 7b:
Write the adjacency matrix of the graph just read into a text file
adjacency.txt.

September 2019 Python: A Crash Course 30

• The first line has one integer
representing the number of
nodes of the graph.

• the subsequent n lines, one for
each node, have n numbers
(separated by tabs) denoting
the labels of the arcs starting
in each of the nodes.

• Label 0 denotes that there is
no arc.

5 8
1 2 5
1 3 43
1 4 95
1 5 22
2 3 68
2 5 35
3 4 39
3 5 90

dimacs.txt

5
0 5 43 95 22
5 0 68 0 35
43 68 0 39 90
95 0 39 0 0
22 35 90 0 0

adjacency.txt

Random Numbers in Python

• Many programs, namely Monte Carlo simulation and Local Serach
Optimization require the use of (pseudo-)random numbers .

• In Python, library random includes a (pseudo-)random generator in the
range]0..1[.

• Other distributions, namely discrete uniform distributions in the range
0..k can be obtained from the basic one.

September 2019 Python: A Crash Course 31

In : import random as r
In : r.random()
Out: 0.8029391687796316
In : r.random()
Out: 0.5334949790540763
In : r.random()
Out: 0.206611672213879

Random Numbers in Python

• All that is required is to do the proper transformation, scaling and then
truncating the random number obtained.

• For example, a distribution in the range 0..k, may be obtained with the
transformation trunc(u*(k+1))

September 2019 Python: A Crash Course 32

In : import random as r
In : import math as m
In : k = 4
In : u = r.random()
In : u
Out: 0.8029391687796316
In : m.trunc(u*(k+1))
Out: 4
In : m.trunc(r.random()*(k+1))
Out: 3
In : m.trunc(r.random()*(k+1))
Out: 3
In : m.trunc(r.random()*(k+1))
Out: 0

Python – Exercise on Graphs

Exercise 8:
• Given an adjacency matrix M of a graph, obtain a random tour

starting and ending at node 1, and visiting each of the other nodes,
exactly once.

• The signature of the function should be
def tour(M)

• The function should return a pair, composed of a tour (a list of the
nodes in the order in which they are visited) and its length (the
sum of the distances of the nodes in the tour).

• The order in which the nodes ae visited is random, so different
calls to the function return, in general, different results.

September 2019 Python: A Crash Course 33

