
Graph Algorithms; Dynamic Programming

Pedro Barahona
DI/FCT/UNL

Computational Methods
1st Semester 2021/22



Graphs
• Graphs are a very common data structure that is useful to model a number of

“network” applications, where a number of “agents” have direct connections
between (some of) them.

• They range from networks of physical services (telecommunications, roads, water
distribution) to more virtual services (e.g. social networks) or even to more abstract
models (neighbouring countries, teams playing in several competitions, …).

• Formally, a graph is defined as a pair <V,E> where

• V is a set of vertices (or nodes)

• E is a set of edges (or arcs), each connecting two of the vertices

• Two characteristics of the edges, weights and direction, might be considered,
leading to different types of graphs:

• Weighted Graphs – Each edge has a weight, usually a positive number

• Directed Graphs – Each edge has a direction, connecting one vertice to
another, but not the other way round

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 2



Graphs

Example:

• An unweighted, undirected graph

• A weighted, undirected graph

• A weighted, directed graph

a
b

c

e
d

g
f

7 8

57

15

11

98

6

95

• A path is a sequence of connected vertices.

• Example: Path: a à b à e à g

• Note: A path is directional, even if the underlying graph is not.

• A cycle is a path starting and ending in the same vertex.

• Example: Cycle: a à b à d à a

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 3



Graphs
• Two nodes are adjacent (or neighbours) if

there is an edge between them.
• Example: adjacent(e,f) but not adjacent(a,g)

• The degree of a vertex is the number of its
adjacent vertices

• Example: degree(e) = 5, degree(b) = 4

a
b

c

e
d

g
f

• A graph ordering is the assignment of a total order to the nodes of the graph,
(i.e. the assignment of values 1..n to the n nodes of a graph)

• Example: O = a < b < c < d < e < f < g

• The width of a node given a graph ordering, is the number of adjacent nodes
lower in the ordering.

• Example: width(e,O) = 3 , i.e. nodes b,c,d are lower in O

• The width of a graph given a graph ordering, is the maximum width of its
nodes given that ordering.

• Example: width(G,O) = 3 , since e is the node with highest width in O

• The width of a graph is the minimum width of the graph over all its orderings.
Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 4



Properties of Graphs
• In general, given a graph, there are several problems that may be considered to

compute some properties of the graphs, such as:

• Connectedness: Is there a path connecting any two vertices of a graph?

• What is the shortest path (number of edges, sum of the edges weights)
between any two vertices?

• What is the width of a graph?

• Are there cycles in the graph, or is it a tree (i.e. with a unique path between
two vertices, or equivalently the graph has width 1)?

• What is the shortest spanning tree?

• Are there Hamiltonian cycles in the graph (including all vertices only once –
except the initial/final vertex). Which one(s) is the shortest?

• Are there cliques in the graph - subset of the graph where any two nodes are
adjacent). Which one(s) is maximal (have more nodes).

• Is it possible to colour a graph with a set of colours, such that two adjacent
vertices have different colours? What is the minimum cardinality of such set?

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 5



Properties of Graphs
• The problems above, and many others, are typically posed in many applications,

and so a number of algorithms have been studied to solve them.

• But before studying some of these algorithms, it is important to adopt a
representation (or encoding) for the implementation of a graph.

• Here we will present the two most common encodings:
• Adjacency matrix.
• Adjacency lists.

• The adjacency matrix is possibly the most intuitive way of implementing a graph.
Given a graph with n vertices and some graph ordering, the adjacency matrix is a
square n ´ n Boolean matrix G, whose elements Gi,j contain information about
the edges between nodes i and j.
• In an unweighted graph, the elements are Booleans
• In a weighted graph, the elements are the weights
• In a undirected graph the matrix is symmetric, otherwise it is usually

asymmetric.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 6



a b c d e f g
a 0 1 -1 1 -1 -1 -1
b 1 0 1 1 1 -1 -1
c -1 1 0 -1 1 -1 -1
d 1 1 -1 0 1 1 -1
e 0 1 1 1 0 1 1
f -1 -1 -1 1 1 0 1
g -1 -1 -1 -1 1 1 0

Graphs

Example:

a
b

c

e
d

g
f

7 8

57

15

11

98

6

95

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 7

a b c d e f g
a 0 7 -1 5 -1 -1 -1
b 7 0 8 9 7 -1 -1
c -1 8 0 -1 5 -1 -1
d 5 9 -1 0 15 6 -1
e 0 7 5 15 0 8 9
f -1 -1 -1 6 8 0 11
g -1 -1 -1 -1 9 11 0

a b c d e f g
a 0 7 -1 -1 -1 -1 -1
b -1 0 8 9 7 -1 -1
c -1 -1 0 -1 -1 -1 -1
d 5 -1 -1 0 15 6 -1
e 0 -1 5 -1 0 -1 9
f -1 -1 -1 -1 8 0 11
g -1 -1 -1 -1 9 -1 0



• The adjacency matrix is a very inefficient representation of sparse graphs, i.e. where
only a “few” of the potential arcs are presented. In this case, of the n2 elements of the
matrix only a (small) fraction of them are non-zero.

• To avoid this waste of space, one may adopt an adjacency lists, i.e. a set of lists
each representing, for each node, the information about its neighbours (taking into
account the directedness).

• The space required is thus O(|E|) which is much less than O(|V2|) for sparse graphs.

Properties of Graphs

a
b

c

e
d

g
f

7 8

57

15

11

98

6

95

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 8

a b:7
b c:8 d:9 e:7
c
d a:5 e:15 f:6
e e:5 g:9
f e:8 g:11
g

a b c d e f g
a 0 7 -1 -1 -1 -1 -1
b -1 0 8 9 7 -1 -1
c -1 -1 0 -1 -1 -1 -1
d 5 -1 -1 0 15 6 -1
e 0 -1 5 -1 0 -1 9
f -1 -1 -1 -1 8 0 11
g -1 -1 -1 -1 9 -1 0



Types of Algorithms
• As we will see, some of these problems require algorithms whose asymptotical

complexity is polynomial on n, the input size of the problem. Assuming that
reads from and writes to memory are basic operations, polynomial algorithms
require O(nk) basic operations, where k is an integer, typically small.

• Problems that can be solved by polynomial algorithms are said to be in class P.

• Other algorithms have exponential complexity, i.e. require O(kn) basic operations.
Problems that can only be solved by these are said to be in class NP.

• Take a computer where each elementary operation takes 1 nsec. The following
table shows the “practical” consequences of the problem being in P or in NP. Here
the size n is the size of an input vector or matrix, or the size |V| or |E| of a graph.
n1: Search in a vector; n2: Sorting (naïf) a vector; n3: Matrix multiplication

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming

n 10 20 30 40 50 60 70
n1 10 nsec 20 nsec 30 nsec 40 nsec 50 nsec 60 nsec 70 nsec
n2 100 nsec 400 nsec 900 nsec 1.6 µsec 2.5 µsec 3.6 µsec 4.9 µsec
n3 1 µsec 8 µsec 27 µsec 64 µsec 125 µsec 216 µsec 343 µsec
2n 1 µsec 1 msec 1 sec 18 min 13 days 37 years 37 K years

23 November 2021 9



Connectedness of Graphs
Problem (Connectedness): Check whether a graph G is connected.

• The definition of connectedness of a graph depends on its type:

• An undirected graph is connected if there is a path between any two nodes
of the graph.

• A directed graph is strongly connected is there is a path between any two
nodes of the graph, respecting the direction of the its arcs.

• A directed graph is weakly connected is there is a path between any two
nodes of the corresponding undirected graph.

• Here we will study the case for the undirected graphs, which is easier to decide,
since paths (being reflexive, symmetric and transitive) create classes of
equivalence.

• We will shortly present an algorithm that checks the connectedness of undirected
graphs, as a side-effect of finding a minimal spanning tree.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 10



Dynamic Programming: Algorithms for Graphs
• Most graph properties address optimisation goals, namely

a. Shortest paths

b. Minimum Spanning Trees

c. Minimum Hamiltonian tours (Traveling Salesman)

d. Minimum number of colours

• Some of these properties (e.g. a and b, but not c nor d), can be computed by
polynomial algorithms.

• In most cases, algorithms to compute the optima may follow a methodology,
dynamic programming, based on Mathematical Induction on the Integers:

• Once an optimal solution is obtained with n nodes, extend it to n+1 nodes.

• We will see two examples of this, in the following algorithms

• Minimum Spanning Tree – Prim’s Algorithm

• Shortest Paths – Floyd-Warshall’s Algorithm

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 11



Minimum Spanning Tree: Prim’s Algorithm
• A spanning tree is a subset of a connected graph that has the topology of a tree

and covers all nodes of the graph.

• It has many applications, namely to provide services to a number of sites (the
nodes) that can be interconnected in several ways (by a graph), but using the a
minimal number of connections that allow all sites to be reached, i.e. a single path
connecting any two nodes.

• Among these spanning trees one is usually interested in minimum spanning
trees (MST) that minimise the sum of the costs of the arcs selected for the tree.

• There are many polynomial algorithms that may be used to compute these MSTs,
the most common ones are the Kruskal’s and the Prim’s algorithms.

• Given the similarities between the latter and the algorithm to check connectedness
of a graph, we will address now the Prim’s Algorithm.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 12



Minimum Spanning Tree: Prim’s Algorithm
• The Prim´s algorithm is an example of Dynamic Programming that extends a MST

with n nodes to n+1 nodes, with an eager selection of the new node (i.e. once the
node is selected, the selection is not backtracked for alternatives).

• The algorithm can be understood as a process of increasing the size of a current
MST, starting with 1 node and ending with all the nodes, and specified as follows:

• Maintain two sets of nodes: In and Out, where In is the set of nodes already
included in a current MST and Out are those not yet included.

1. Select arbitrarily a node from the tree to initialise the In set, and put the
others in the Out set;

2. While there are nodes in the Out set,

i. Find which node from the Out set has an arc of least cost connecting it
to one of the nodes of the In set;

ii. Transfer the node from the Out set to the In set and include the least
cost arc in the current MST.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 13



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Start with an arbitrary node in the In 
set

• Start with the Out set with all the 
other nodes

• Initialise the MST to empty

In = [e]

Out = [a,b,c,d,f,g]

MST = {}

e



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the 
In and Out sets

• Chose that with minimum cost

In = [e]

Out = [a,b,c,d,f,g]

MST = {}

5

b

f

g



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [e,b]

Out = [a,c,d,e,f,g]

MST = {<b,e>}

• Move the out node of the arc from 
the Out to the In set.

• Include the arc in the MST

b



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,e]

Out = [a,c,d,f,g]

MST = {<b,e>}

• Check all arcs between nodes in the 
In and Out sets

• Chose that with minimum costa

c

f

g

3



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e]

Out = [a,d,f,g]

MST = {<b,e>, <b,c>}

• Move the out node of the arc from 
the Out to the In set.

• Include the arc in the MST

c



2

a

c
db

e
f

6

4

9

43

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the 
In and Out sets

• Chose that with minimum cost

In = [b,c,e]

Out = [a,d,f,g]

MST = {<b,e>, <b,c>}

a

f

g

2



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e,f,]

Out = [a,d,g]

MST = {<b,e>, <b,c>,

<c,f>}

• Move the out node of the arc from 
the Out to the In set.

• Include the arc in the MST

f



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e,f]

Out = [a,d,g]

MST = {<b,e>, <b,c>,

<c,f>}

• Check all arcs between nodes in the 
In and Out sets

• Chose that with minimum costa

d

g

4



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,d,e,f]

Out = [a,g]

MST = {<b,e>, <b,c>,

<c,f>, <d,f>}

• Move the out node of the arc from 
the Out to the In set.

• Include the arc in the MST

d



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,d,e,f]

Out = [a,g]

MST = {<b,e>, <b,c>,

<c,f>, <d,f>}

• Check all arcs between nodes in the 
In and Out sets

• Chose that with minimum costa

g

4



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Move the out node of the arc from 
the Out to the In set.

• Include the arc in the MST

In = [a,b,c,d,e,f]

Out = [g]

MST = {<b,e>, <b,c>,

<c,f>, <d,f>

<a,c>}

a



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the 
In and Out sets

• Chose that with minimum cost

g7

In = [a,b,c,d,e,f]

Out = [g]

MST = {<b,e>, <b,c>,

<c,f>, <d,f>

<a,c>}



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Move the out node of the arc from 
the Out to the In set.

• Include the arc in the MST

In = [a,b,c,d,e,f,g]

Out = []

MST = {<b,e>, <b,c>,

<c,f>, <d,f>

<a,c>, <e,g>}

g



a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = []

Out = [a,b,c,d,e,f,g]

MST = {<b,e>, <b,c>,

<a,c>, <c,f>,

<e,g>, <d,f>}

• The Out set is now empty

• Return the MST.



Minimum Spanning Tree: Prim’s Algorithm
• Several variants can be used in the implementation of the Prim’s algorithm, using

appropriate data structures that make it more efficient. Here we present a simple
implementation that nonetheless is acceptable for relatively large graphs.

1. Select arbitrarily a node from the tree to initialise the In set (here node 0).
2. Put the other nodes in the Out set.
3. Initialises the Minimum spanning tree T to an empty graph.
4. Update and eventually returns the Minimum spanning tree T.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming

def prim(G):
""" Returns the minimum spanning tree of graph G,
using the prim algorithm"""
n = len(G)
In = [0]
Out = [i for i in range(1,n)]
row = [-1 for i in range(n)] # an n-vector with -1s
T = [row.copy() for i in range(n)] # an nxn-matrix with -1s
while ...:

...
return (T)

23 November 2021 28



Minimum Spanning Tree: Prim’s Algorithm
• The tree is then updated as follows:

1. While there are nodes in the Out set,
i. Find the arc of least cost between a node u in the In set and a node v

from the Out set (if there is one!);
ii. If no arc is selected, that means the graph is not connected and should

be returned (together as the remaining Out nodes)
iii. Include the least cost arc in the current MST.
iv. Transfer the node from the Out set to the In set and

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming

while len(Out) > 0:
min_arc = math.inf
u = v = 0
for i in In:

for j in Out:
if G[i][j] > 0 and G[i][j] < min_arc:

u = i
v = j
min_arc = G[i][j]

...

23 November 2021 29



Minimum Spanning Tree: Prim’s Algorithm
• The tree is then updated as follows:

1. While there are nodes in the Out set,
i. Find the arc of least cost between a node u in the In set and a node v

from the Out set (if there is one!);
ii. If no arc is selected, that means the graph is not connected the

“disconnected” nodes, Out , are returned; otherwise
iii. Include the least cost arc in the current MST.
iv. Transfer the node from the Out set to the In set

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming

while len(Out) > 0:
...

u = i
v = j

...
if u == v == 0:

return (Out)
T[u][v] = G[u][v]
T[v][u] = G[v][u]
In.append(v)
Out.remove(v)

23 November 2021 30



Minimum Spanning Tree: Prim’s Algorithm
• The complete algorithm is shown below:

def prim(G):
""" ... """
n = len(G)
In = [0]
Out = [i for i in range(1,n)]
row = [-1 for i in range(n)]
T = [row.copy() for i in range(n)]
while len(Out) > 0:

min_arc = math.inf
u = 0
v = 0
for i in In:

for j in Out:
if G[i][j] > 0 and G[i][j] < min_arc:

u = i
v = j
min_arc = G[i][j]

if u == 0 and v == 0:
return (Out)

T[u][v] = G[u][v]
T[v][u] = G[v][u]
In.append(v)
Out.remove(v)

return (T)

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 31



Minimum Spanning Tree: Prim’s Algorithm
• It is easy to prove, by induction, that the algorithm is correct. If T is an MST with least

cost with n nodes, adding to it the least cost arc will make it an MST with least cost
with n+1 nodes (adding any other arc would lead to a higher cost spanning tree).

• As to the worst cost complexity of the algorithm, with this implementation, we notice
that the while loop is executed n-1 times (n is the number of nodes of the graph, |V|).

• Finding the minimal cost arc, when k nodes are already in the In list, requires two
nested loops over ranges with k and n-k values, i.e. at most n2/4 (for k = n/2)
executions of the body of the loop

• All operations in the loop are “basic”, and so the complexity of this implementation of
the Prim’s algorithm is O(n*n2/4) i.e. O(|V|3) (where |V| = n).

• Note: Implementations with priority queues and other advanced data structures have
better complexity, namely O(|E|+Vlog|V|).

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming

while len(Out) > 0:
...
for i in In:

for j in Out:
...

23 November 2021 32



Shortest Paths – Floyd-Warshall’s Algorithm
• There are many algorithms for finding shortest paths between nodes of weighted

graphs. They include algorithms to find one shortest path between two nodes, like the
Dijskstra algorithm, or to find all shortest paths between any two nodes of the graph,
namely the Floyd-Warshall’s (FW) algorithm.

• As the previous one, the FW algorithm explores dynamic programming in the
following way:

• The initial shortest path between any two nodes, is the direct distance (that can be
infinite).

• A list In is initialised with all n nodes;

• The current shortest distance between two nodes is then updated by checking
whether an indirect path exists passing in each of the nodes in list In.

• The final result is a matrix with all minimal distances between any two nodes.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 33



Shortest Paths – Floyd-Warshall’s Algorithm
• The algorithm can thus be implemented as follows:

1. Initialise a matrix S of shortest paths with the adjacency matrix (that is, only
direct distances between any two nodes are initially considered).
• Of course, nodes that are not directly connected by an arc have a

distance of -1 at this stage. For convenience, we will assign them to inf.
1. Now, for all values k in the In list (i.e. from 0 to n-1) iterate.

• In iteration k, update S, by considering all indirect paths between nodes i
and j passing through node k.

3. After the last iteration, matrix S contains all shortest paths between any two
nodes of G.

• Notice that this algorithm only computes the paths with shortest distance between
any two nodes but does not return what these paths are.

• In fact, a small addition to the algorithm, coming shortly, allows the paths to be
obtained.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 34



• The first loop sets the initial paths between nodes i and j to be the direct paths, if they
exist.

• The shortest paths are updated by considering the triangular inequality, with paths
passing through the previous values of k.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 35

def floyd(G):
""" Returns the minimum distances between any two modes

of graph G, using the Floyd-Warshall’s algorithm."""
n = len(G)
S = [ [ math.inf for i in range(n) ] for j in range(n) ]
for i in range(n):

for j in range(n):
if G[i][j] != -1:

S[i][j]= G[i][j]
for k in range(n):
for i in range(n):

for j in range(n):
if S[i][k] + S[k][i] < S[i][j]:

S[i][j] = S[i][k] + S[k][j]
return S

Shortest Paths – Floyd-Warshall’s Algorithm



Shortest Paths – Floyd-Warshall’s Algorithm
• The correction of the algorithm can be proved by induction on the number of nodes

considered in indirect paths (left as exercise).

• As to the complexity, it is easy to see that the algorithm requires 3 nested loops of
size n, with a basic operation in the body,

• The complexity of the algorithm is thus O(|V|3).

• Notice that algorithms to compute shortest paths between 2 nodes, like the Dijkstra
algorithm, have complexity O(|V|2), but they do not consider the distance between all
the nodes.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 36

for k in range(n):
for i in range(n):

for j in range(n):



Path Reconstruction – Floyd-Warshall’s Algorithm
• The previous algorithm does not provide the shortest paths between any two nodes,

but rather the shortest distances of any path between the nodes.

• Nevertheless, these paths may be easily reconstructed if a matrix is computed during
the FW algorithm, to it possible to later compute the shortest path from some node i
to another node j.

• Matrix Next plays this role. In such matrix, Next[i][j] = k means that the shortest
path from node i to node j, starts in arc i ➞ k.

• All that is needed is to compute matrix Next during the FW algorithm. To do so, all
values Next[i][j] should be initialised with j (in the beginning, i.e. before exploring
the graph, the best path is the direct path).

• In fact, if there is no connection between nodes i and j, Next[i][j] should be
initialised to inf, to account for that non-connection.

• Then, if a better path is found through node k, Next[i][j] must be updated to
Next[i][k], i.e. to go from i to j, one should start in the best arc to go from i to k.

• Better paths are found in the inner loop of the FW algorithm, so one needs simply to
add some extra instructions to function floyd just developed.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 37



Path Reconstruction – Floyd-Warshall’s Algorithm
• The initialisation of matrix Next (i.e. Next[i][j] = j) can be implemented as:

• If there is no connection, this should be accounted for in Next:

• The update of the elements of Next may be done in the inner loop of the floyd
function, taking into account that

• If a better path is found, through node k, Next[i][j] must be updated to
Next[i][j], i.e. to go from i to j, one should start in the best arc to go from i to k.

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 38

Next = [ [ j for j in range(n) ] for i in range(n) ]

for k in In:
for i in range(n):

for j in range(n):
if S[i][k] + S[k][i] < S[i][j]:

S[i][j] = S[i][k] + S[k][j]
Next[i][j] = Next[i][k]

if G[i][j] != -1 :
...

else:
Next[i][j] = -1



Path Reconstruction – Floyd-Warshall’s Algorithm

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 39

def floyd(G):
""" ..."""
n = len(G)
S = [ [ math.inf for i in range(n) ] for j in range(n) ]
Next = [ [ j for j in range(n) ] for i in range(n) ]
for i in range(n):

for j in range(n):
if G[i][j] != -1:

S[i][j]= G[i][j]
else:

Next[i][j] = -1
for k in range(n):
for i in range(n):

for j in range(n):
if S[i][k] + S[k][i] < S[i][j]:

S[i][j] = S[i][k] + S[k][j]
Next[i][j] = Next[i][k]

return (S, Next)

• The completed Floyd function is thus shown below (changes in bold).



• Once the matrix Next is returned the path between any two nodes, u and v, can be
obtained by following the trail indicated by this matrix, as shown below

• The first test checks whether there is any path between nodes u and v. If not it
returns an empty path.

• Otherwise the path is “reconstructed”, starting in node u …
• … and continuing until node v is reached.

• With this reconstruction technique, the complexity of the FW algorithm is not
changed, and the paths are only computed when needed.

Path Reconstruction – Floyd-Warshall’s Algorithm

Pedro Barahona - 8: Graph Algorithms; Dynamic Programming23 November 2021 40

def path(u,v,Next):
""" Returns the shortest path between nodes u and v,
according to matrix Next computed with function floyd."""
if Next[u][v] == -1:

return []
P = [u]
while u != v:

u = Next[u][v]
P.append(u)

return P


