Lab. 11 - Graph Problems (3)

Read the graphs given in the attached files (already given in the previous lab class) into their adjacency matrix, namely

- graph_10_10.txt \rightarrow G_10_10
- graph_10_50.txt \rightarrow G_10_50
- graph_10_90.txt \rightarrow G_10_90
- graph_15_10.txt \rightarrow G_15_10
- graph_15_50.txt \rightarrow G_15_50
- graph_15_90.txt \rightarrow G_15_90
- graph_20_10.txt \rightarrow G_20_10
- graph_20_50.txt \rightarrow G_20_50
- graph_20_90.txt \rightarrow G_20_90
- graph_50_90.txt \rightarrow G_50_90

11.1 TSP – combinatorial search

Solve the TSP problem with function discussed in lecture 11 (get file mc_2021_lab_11.py)

tsp(G, heur, satCost)

for the graphs G, given above, and different values of parameters heur and satCost. Remind that

- (bool) heur: specifies whether heuristic search is used; and
- (int) satCost: interrupts search when a solution with cost less or equal to satCost is obtained.

11.2 TSP – local search

Compare the solutions obtained in the previous problem with those obtained by local search. To do so, examine function (also provided in file mc_2021_lab_11.py)

tsp_rnd(G, n_iterations)

where the best solution obtained in n_iterations. Compare the efficiency and quality of results obtained with bot functions, for graphs with 10, 15 and 20 nodes (or more).

Note: Find below the best cost solutions for the graphs above:

- $G_{10}_{10} \rightarrow inf$
- $G_{10}_{50} \rightarrow 454$
- G 10 90 → 201
- G 15 10 \rightarrow inf
- $G 15 50 \rightarrow 294$
- G 15 90 \rightarrow 173
- $G_{20}_{10} \rightarrow \inf$
- $G_{20}_{50} \rightarrow 521$
- $G_{20}90 \rightarrow 354$
- $G_{50}90 \rightarrow 236$