
Stochastic Simulation

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2018/2019

22 November 2019

Random Processes
• Many “systems” do not have an analytical model from which we may study their

behaviour over time, as well as making decisions about their design. Nevertheless,
for many such systems, their behaviour may be analysed by simulation.

• An important source of uncertainty is the occurrence of non-deterministic events,
affecting such behaviour, but for which there is no exact information about them.

• In this case, studying these systems requires the consideration of stochastic
processes, i.e. phenomena that evolve over time or space taking into account a
sequence of events. The timing of these events can be approximated given the
incomplete information that may be known, such as the patterns observed in the
past of their occurrence.

• These patterns are typically modelled by probability distributions that fit the
observations, as studied in Statistics.

• Here we will thus consider nondeterministic processes where events follow some
probability distribution, discrete or continuous, and study how to model systems
subject to this type of events.

Random Variables; (Monte Carlo) Simulation 2

22 November 2019

(Pseudo-) Random Numbers
• As will be seen briefly, any nondeterministic process dependent on events that

follow known probability distributions may be simulated if it is available a random
generator function, that generates numbers in the interval 0..1 with a uniform
distribution.

• This random generator is available in all programming languages. In Python, it is
available through function random() from library random.

• Based on this function any nondeterministic distribution, defined by a known
probability density function (PDF), p, can be simulated.

• Informally, this function is defined over a domain, discrete or continuous, of the
values that a probabilistic variable can take. We will assume here a numerical
domain ranging in the interval a..b.

• Remind that the cumulative distribution function (CDF), P, can be defined as

Random Variables; (Monte Carlo) Simulation 3

Discrete Domains

𝑃(𝑡) = &
'()

*

𝑝(𝑣)

Continuous Domains

𝑃(𝑡) = -
.()

*
𝑝 𝑥 𝑑𝑥

22 November 2019

Probability Distributions - Inverse Method
• The inverse method takes into account that, for a random variable taking values in

the domain a .. b, it is
P(a) = 0 and P(b) = 1

• Then, the random variable may be implemented by the inverse method in the two
following steps:

1. Generate a random number r, with uniform distribution in the interval 0 .. 1;

2. Return x = P-1(r)

• In fact the probability pi of generating a number in interval xi .. xi+dx, i.e. the
probability that the variable takes an approximate value xi is, dx. Hence,

Random Variables; (Monte Carlo) Simulation 4

• p1 = dr1 = dP(x1)/dx • dx = p(x1) dx;

• p2 = dr2 = dP(x2)/dx • dx = p(x2) dx;

• Thus, the probabilities of two values in the
domain being generated is proportional to
the value of their probability density function. 0

0.25

0.5

0.75

1

0 1 2 3 4

P(x)

dxdx

x1 x2

dr1

dr2

22 November 2019

Probability Distributions - Inverse Method
Example: Simulate the next arrival of a stochastic process following an exponential
distribution, with mean time m = 1/l

• This is a continuous distribution where p(t) = l e-lt, where t ranges from 0 to ∞.

• The probability function r = F(t) = (1- e-lx) (shown for l = 1)

• The inverse function is then t = F-1(r) = - log(1-r) / l = - m * log(1-r)

• Hence, these arrivals can be modelled by a variable obtained through function
exp_inv(m), shown below parameterised by the value of m.

Random Variables; (Monte Carlo) Simulation 5

def exp_inv(mean):
"""computes the timing of an event
according to an exponential
distribution with the given
mean time"""
r = random.random()
t = - mean * math.log(1-r)
return t0

0.25

0.5

0.75

1

0 1 2 3 4 5

1 - exp(-t)

22 November 2019

Probability Distributions - Accept/Reject Method
• Of course, the inverse method assumes that it is possible to obtain a closed form

for F-1, the inverse of the cumulative distribution function F.

• When such a closed form of F-1 is not available, the random variable may be
implemented by the accept/reject method. Assuming

• The domain of the variable is a .. b, and

• The probability density function in the domain is always less or equal to Y

then the random variable may be implemented in the following steps:
1. Generate a random number t, with uniform distribution in the interval a .. b;
2. Generate a random number r, with uniform distribution in the interval 0 .. Y;
3. Accept x, if r ≤ p(t), reject it otherwise

• In some cases, the domain of a continuous random variable is infinite. In this case,
one may truncate the domain so that the values truncated have a “very low
probability”

Random Variables; (Monte Carlo) Simulation 6

22 November 2019

Probability Distributions - Accept/Reject Method
• The probability that a value t in the domain a..b is accepted is thus

• Probability that t is generated, i.e. the value is between x and x +dx;
• Probability that the value is subsequently accepted, i.e. p(t) ≤ r.

• Given two values t1 and t2, the first probability is the same for both (dx is the
same) .

• Since r is generated in the range 0..Y, their acceptance probability is, respectively,
p(t1)/Y and p(t2)/Y.

• Hence the probability of generating two values t1 and t2 is proportional to the value
of their probability density function

Random Variables; (Monte Carlo) Simulation 7

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

p(x) = 2 exp(-x)

Y

x1 x2

p(t)= m exp(-t/m)

22 November 2019

Probability Distributions - Accept/Reject Method
Example: Simulate the next arrival of a stochastic event following an exponential
distribution
• This is a continuous distribution where p(x) = l e-lx, ranging from 0 to ∞.
• The domain must then be truncated to some value T (T=5 in the figure).
• The function is always less or equal to l (we use Y = l = 1/m = 2 in the figure).
• Hence, these arrivals can be modelled by a variable obtained through function

exp_ar(mean), shown below parameterised by the value of m = 1/l.

Random Variables; (Monte Carlo) Simulation 8

def exp_ar(mean):
"""computes ..."""
accept = False
while not accept:

t = 10 * mean * random.random() # t < = 10*mean
r = random.random() / mean # Y = 1 / mean
y = math.e**(-t/mean) / mean # y <= 1 / mean
accept = (r <= y)

return t

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p(x) = l exp(- l x)

16 November 2018

Example - Erlang distribution
• The Erlang distribution is the distribution of the sum of k independent and

identically distributed random variables, each having an exponential distribution
with mean m.

• Source: https://en.wikipedia.org/wiki/Erlang_distribution

Random Variables; (Monte Carlo) Simulation 9

16 November 2018

Erlang distribution
• The Erlang distribution is the distribution of the sum of k independent and

identically distributed random variables, each having an exponential distribution
with mean m.

• Its pdf (probability density function) is the following:

𝒇(𝒙; 𝒌,𝒎) = 𝒙𝒌7𝟏𝒆7𝒙/𝒎

𝒎𝒌 𝒌;𝟏 !

• Hence, a significant difference with respect to the uniform and exponential
distribution is that it cannot be generated by the inverse method (that requires
obtaining x as a function of f).

• Hence it can be obtained by the general accept-reject method, assuming that it is
truncated at some convenient x (for example, xmax = 10*k*m) and max value (it
depends on k and m, but for k > 1 and m > 0.2, fmax = 2 is a “safe” value).

• Of course, given the definition above it can be simulated as the sequence of k
exponential distributions, each with a mean m.

Random Variables; (Monte Carlo) Simulation 10

𝒇(𝒙; 𝒌,𝒎) =
𝒙𝒌;𝟏𝒆;𝒙/𝒎

𝒎𝒌 𝒌 − 𝟏 !

• Adopting the accept-reject method the distribution can be obtained by adapting the
generic ar function (seen before) to the Erlang pdf, as follows

• In this case, we generate values of x, up to a maximum 10*k*m. In this range of
values for x, the values of the pdf are all below 2 (as discussed)

16 November 2018

Erlang distribution

Random Variables; (Monte Carlo) Simulation 11

def erlang_ar(k,mean):
"""generates events with an Erlang (k,m) distribution,
adopting the the ccept-reject method. """
accept = False
while not accept:

t = 10 * k * mean * random.random() # t <= 10 * k * mean
r = 2 * random.random() # Y = 2
num = t**(k-1) * math.e**(-t/mean)
den = mean**k * math.factorial(k-1)
y = num/den
accept = (r <= y)

return t

• Since the Erlang distribution corresponds to the the sum of k independent and
identically distributed random variables, each having an exponential distribution
with mean m/k, its generator can be also obtained alternatively as:

16 November 2018

Erlang distribution

Random Variables; (Monte Carlo) Simulation 12

def erlang_ke(k,mean):
"""generates events with an Erlang (k,m) distribution, taking
it account that this distribution corresponds to a sequence of
k independent exponential distibutions with mean m. """
t = 0
for i in range(k):

t = t + exp_inv(mean);
return t

22 November 2019

Simulation of Stochastic Systems
• A stochastic system has a behaviour that depends on a stochastic process, i.e. a

sequence of non-deterministic events that evolve over time or space.

• Here we assume that the nondeterministic events may be modelled by random
variables specified by some probability distribution.

• At any time, the system is characterised by its state, i.e. the value of the set of
state variables that completely specifies it.

• Whenever an event occurs, it causes some (possibly empty) change of the system
to a new state, possibly yielding some output.

• Such a system can thus be modelled by an automaton, defined informally as
• A set of states, some of which might be the initial states
• A set of transitions, between two states, caused by some event, and possibly

yielding some output.
• Monitoring data, that gathers extra information during the simulation useful to

analyse the behaviour of the system.

• The behaviour of the system is modelled by simulating the state transitions of the
automaton given a set of events, until a stop condition holds.

Random Variables; (Monte Carlo) Simulation 13

22 November 2019

Simulation of Simple Queuing System
• We illustrate the simulation of this type of processes, with a (very) simple queuing

system with the following characteristics:
i. Clients arrive at some server, according to a exponential distribution with

mean time m1.
ii. The server dispatches a client with an Erlang distribution (k, m2), i.e. a

sequence of k exponential tasks with average time of m2 minutes each.
iii. Every time a client arrives and finds the server busy, it gives up from being

serviced.

• The goal is to compute the percentage of clients that are nor served.

• To obtain the percentage of clients lost, we can simulate the behaviour of this
system for a sufficient long time, and monitor the number of clients that are served
as well as the number of clients that are lost (rejected)

• Hence, throughout the simulation, we should maintain state variables (that
represent the state of the system) and monitoring variables (that represent the
information that we are interested in studying).

. Random Variables; (Monte Carlo) Simulation 14

22 November 2019

Simulation of Simple Queuing System
For study such a system we can define the following modelling variables:

• States:
• The server may be busy or idle, and this may be represented by a Boolean

variable busy;

• Monitoring:
• The number of clients accepted and rejected may be represented by two

integer variables: na and nr, respectively.

• Events:
• Two types of events are considered:

• a) arrival of a client.
• The arrival time of a client is generated after the arrival of the previous client

• b) leaving of a (served) client.
• The leaving time is generated when a client starts to be served.

• Transitions:
• How to change the above variables upon occurrence of the above events.

Random Variables; (Monte Carlo) Simulation 15

22 November 2019

Simulation of Simple Queuing System
• The programming of this system can thus be made representing the following

transition table:

Random Variables; (Monte Carlo) Simulation 16

state variables
busy type busy n_accepted n_rejected type time

variables updateState
Variables monitoring variables

event
(at time t) next event (s)

arrival t + exp(l)
leaving t + Er(n,l)

FALSE -> TRUE +1 =arrival

TRUE arrival = = +1 arrival t + exp(l)

TRUE leaving -> FALSE = = - -

22 November 2019

Simulation of Simple Queuing System

Random Variables; (Monte Carlo) Simulation 17

def simple_queue_simulation (mean_1, k, mean_2):
“”” computes the percentage of rejected clients in a system with
one server, where clients arrive according to an exponential
distribution with parameter lbd_1, and are served according to an
erlang distribution with parameters k and lbd_2”””
busy = False
n_accepted = 0
n_rejected = 0
next_arrival_time = 0
next_leaving_time = 0
while n_accepted + n_ rejected < 1000 # simulate 1000 clients

...
return 100.0 * n_rejected/(n_accepted + n_rejected)

• The programming of this system can thus be made in Python by
• Stating the initial conditions (variables busy, n_accepted, n_rejected)
• Specify a termination condition and

• Encode the transition table
• Return the intended results

state variables

busy type busy na (accepted) nr (rejected) type time

variables updateState
Variables monitoring variables

event
(at time t) next event (s)

• Programming the simulation loop follows the transition table discussed:

• Of course, the distributions of the arrival and leaving times must be encoded with
the appropriate functions, discussed earlier.

22 November 2019

Simulation of Simple Queuing System

Random Variables; (Monte Carlo) Simulation 18

while n_accepted + n_rejected < 1000: # simulate 1000 clients
if not busy or next_arr_time < next_eos_time:

if not busy:
busy = True
n_accepted = n_accepted + 1
next_leaving_time = next_arrival_time + erlang_ke(k, mean_2)

else:
n_rejected = n_rejected + 1

next_arrival_time = next_arrival_time + exp_inv(mean_1)
else:

busy = false state variables

busy type busy na (accepted) nr (rejected) type time

variables updateState
Variables monitoring variables

event
(at time t) next event (s)

arrival t + exp(l)
eos t + Er(n,l)

FALSE -> TRUE +1 =arrival

TRUE eos -> FALSE = = - -

TRUE arrival = = +1 arrival t + exp(l)

22 November 2019

Example: Traveling Salesperson Problem
• Random numbers can also be used in the solution of hard problems, although in

an approximate way. We illustrate this technique with the TSP – Traveling
Salesperson Problem.

TSP Problem:

• Given a number of cities where a saleswoman operates, the goal is to find the
sequence of visits such that the cost of travelling is minimal.

• The problem may be modelled by a graph where the edges have costs (e.g.
distances, fuel, or time), and an example is shown below.

Random Variables; (Monte Carlo) Simulation 19

0

4

2

1

3

54
65

23

34

95 87

66

27
35

38

47

63

66

61

72

38
40

72

Graph

0 1 2 3 4

0 - 34 38 42 65

1 23 - 95 72 63

2 40 87 - 66 51

3 38 72 66 - 27

4 54 61 47 35 -

Adjacency Matrix

22 November 2019

Example: Traveling Salesperson Problem
• A solution of the problem, is a sequence of the cities, Visited, that represents the

order in which they are visited.

• If the cities are selected randomly, and the solving process is repeated several
times, different solutions are obtained.

• Eventually good solutions, or even the best solution, is obtained.

• Hence this problem can be solved, with the following function

Random Variables; (Monte Carlo) Simulation 20

def tsp(AdjMat):
"""the function solves the TSP problem in a graph given by
its Adjacency matrix representation. It returns the sequence
of node that are visited in the circuit, the cost of all the
edges of the circuit, and their sum."""
....
return(Visited, Edges, sum(Edges))

22 November 2019

Example: Traveling Salesperson Problem
• The solution is found by starting with:

• obtaining n, the number of nodes in the Adjacency matrix

• a list, Visited, with the initial node (any node will do but we use node 0); and

• a list, ToVisit, of all the nodes still to visit (i.e. [1,2…,n-1]); and

• an empty list of the Edges already travelled through;

• Then a while cycle is performed to fill the Visited and Edges list, until there are no
more nodes to visit.

Random Variables; (Monte Carlo) Simulation 21

def tsp(AdjMat):
""”...""”
n = len(AdjMat);
Visited = [0]
ToVisit = [i for i in range(1,n)]
Edges = []
while len(ToVisit) > 0:

...
return(Visited, Edges, sum(Edges))

22 November 2019

Example: Traveling Salesperson Problem
• The cycle iterates the following instructions:

• It sets the last visited node as the x node; and
• It selects a node to visit, from the ToVisit nodes, given x, and the graph; and
• It sets the next node to visit as the y node; and
• Appends the cost of the edge x -> y to the Edges list; and
• Appends node y to the Visited list; x -> y to the Edges list; and finally
• Removes the y node from the nodes to visit;

• In the end of the cycle, edge from the last visited node to node 0 is appended to
the Edges list, and the results are returned.

Random Variables; (Monte Carlo) Simulation 22

...
while len(ToVisit) > 0:

x = Visited[-1]
i = select_random_index(x, ToVisit, AdjMat)
y = ToVisit[i]
Edges.append(AdjMat[x][y])
Visited.append(y)
ToVisit = remove_node(i, ToVisit)

Edges.append(AdjMat[Visited[-1]][0])
return(Visited, Edges, sum(Edges))

22 November 2019

Example: Traveling Salesperson Problem
• Removing the node from the ToVisit list is made with the obvious list operations

• Of course the key to obtain a good solution is to select a good “next node” y

and a naïve strategy is simply to obtain an arbitrary index, as in

Random Variables; (Monte Carlo) Simulation 23

def remove_node(i, L):
""" returns list L with the element in position i removed"""
P = L[0:i]
P.extend(L[i+1:])
return P

i = select_index(x, ToVisit, AdjMat)

def select_random_index(x,L, Matrix):
""" selects an arbitrary index from list L"""
k = len(L)
r = random.random()
z = math.floor(k*r)
return z

22 November 2019

Example: Traveling Salesperson Problem
• Although it looks very naïve, and it is, this random selection of the next node, if the

solving is repeated a large number of times it may eventually obtain good or even
optimal (minimal solutions). Other strategies are possible though.

• The node to be selected might be that form the ToVisit list that is closer to node x

• This is an eager selection, and apart from ties in some edges, it always provides
the same solution. It is usually a good solution, but not optimal in most cases,
namely when the graphs are large.

• A better strategy is to allow some randomness in the selection. This can be done
by selecting, not the closest node, but selecting arbitrarily one of the neighbour
nodes of x with a probability that is inversely proportional to its cost:

• Programming these alternative functions is left as an exercise.

Random Variables; (Monte Carlo) Simulation 24

i = select_closer_index(x, ToVisit, AdjMat)

i = select_likely_index(x, ToVisit, AdjMat)

22 November 2019

Discrete Probability Distributions
• In many cases, the events ae modelled by discrete numbers, namely integers. If all

the numbers have the same probability the method to generate these numbers is
straightforward, and adapts the inverse method seen before.

Random Variables; (Monte Carlo) Simulation 25

• This can be illustrated with the
“throwing of a dice”. In this discrete
distribution, each of the values 1 to 6
occurs with probability 1/6.

• The probability distribution P(x), is
the step function shown in the figure

• The inverse function, P-1(x), can be
computed by finding the step (1..6) of
the probability function that
corresponds to a random number r,

generated randomly.

22 November 2019

Discrete Probability Distributions
• The discrete events representing the throwing of a dice can be thus modelled as:

Random Variables; (Monte Carlo) Simulation 26

import random
def dice():

r = random.random();
if r <= 1/6:

return 1
elif r <= 2/6:

return 2
elif r <= 3/6:

return 3
elif r <= 4/6:

return 4
elif r <= 5/6:

return 5
else:

return 6

• Or better still by the equivalent, and
more compact definition

def dice():
r = random.random();
return math.ceil(6*r)

22 November 2019

Discrete Probability Distributions
• This technique may be generalised to non equal probable events. If we know the

relative probability of events we may adopt the inverse method.

• For example if we have 3 possible outcomes, with probabilities 50%, 30% and
20%, we can still generate a number 1 to 3 as follows:

• Generate a random number, r, in the range 0..1
• if r <= 0.5 return 1
• if 0.5 < r <= 0.8 return 2
• if 0.8 < r return 3

• We leave as an exercise to generate a number k, from 1 to n from given a list P
with n numbers representing the relative probabilities of the n possible outcomes

• Note: Use this function to implement function select_among_index discussed
above in the TSP

Random Variables; (Monte Carlo) Simulation 27

def proportional_random(P):
...
return k

