
Functions; IF and FOR instructions

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2019/2020

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

1

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

2

Conditional Execution - IF
• The function angle/2 that was discussed in the (and is shown below) executes a

sequence of assignment instructions, some of them calling pre-defined functions, like
sqrt/1 and acos/1), as well as other user defined functions (e.g. length/1 and
dot_product/2).

• This is a very rare situation. In most programs/functions the sequence of
instructions depends on conditions of the data being used.

def length(u):
"""Returns ... """
return m.sqrt(u[0]**2 + u[1]**2 + u[2]**2)

def dot_product(u,v):
"""Returns ... """
dot = u[0]*v[0] + u[1]*v[1] + u[2]*v[2]
return dot

def angle(u,v):
"""Returns ..."""
c = dot_product(u,v) / (length(u) * length(v))
return m.acos(c)

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

3

Conditional Execution - IF
• For specifying this conditional execution, all languages include an instruction: IF.

Syntax may vary for different languages so here we will use the Python syntax.

• In its simplest form this instruction conditions the execution of a THEN-BLOCK,
where the CONDITION is any Boolean Expression.

• Very often the instructions selects one of two sequence of instructions: either the
THEN-BLOCK or the ELSE-BLOCK is executed

• IMPORTANT: Notice that the THEN- and ELSE- blocks must be indented wrt the if /
else declaration. Moreover, the else keyword must be aligned with the if keyword

if <CONDITION>:
THEN-BLOCK

if <CONDITION>:
THEN-BLOCK

else:
ELSE-BLOCK

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

4

Conditional Execution - IF
• We may illustrate the first case with a function to compute the absolute value of a

number (in fact this function is already pre-defined, as abs/1).

• An alternative specification of this function would use the else statement

def absolute(x):
""" returns the absolute value of x """
a = x
if x < 0:
a = -a # changes the sign of a

return a

def absolute(x):
""" returns the absolute value of x """
if x < 0:

a = -x
else:

a = +x
return a

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

5

Conditional Execution - IF
• A more complex example: Find the (real) roots of a 2nd degree equation

• Note 1: Notice the indentation – otherwise the code is WRONG.

• Note 2: Notice the comments – they make the code more “understandable”

def equation_2(a, b, c):
""" returns the solutions of equation
ax^2 + bx + c = 0 (assuming a != 0)
"""
d = b**2 – 4*a*c;
if d < 0: # no solutions

roots = [] # roots is an empty vector
else:

if d == 0: # one single solution
roots = [-b/(2*a)]

else: # two distinct solutions
roots = [-b + m.sqrt(d) / (2*a),

-b – m.sqrt(d) / (2*a)]
return roots

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

6

Conditional Execution - IF
• The previous example illustrates the “nesting” of if statements (if inside an if blocks).

• The code becomes more readable if one uses not a single ELSE-BLOCK but several
ELIF-BLOCKS.
function equation_2(a, b, c):

""" returns the solutions of equation
ax^2 + bx + c = 0 (assuming a != 0)
"""
d = b**2 – 4*a*c;
if d < 0: # no solutions

roots = [] # roots is an empty vector
elif d == 0: # one single solution

roots = [-b/(2*a)]
else: # two distinct solutions

roots = [-b + m.sqrt(d) / (2*a),
[-b – m.sqrt(d) / (2*a)]

return roots

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

7

Python – Lists
• Before addressing the FOR instruction for repeated execution of a block of

instructions, we note that this instruction is often associated to Lists and other data
strauctures, that we overview here.

• As seen before, Python provides the data structure list, to allow the organization of
collection of any type of objects, not only of simple data types (e.g. Int or float) but
also other more complex objects, such as lists.

• Instances (objects) of this type of data structure (class) are typically created with
simple enumeration. For example,

• The last case, a list of characters is usually created as as string,

In : L = [1,2,3,4]
In : M = [1, "a", [1,2,3]]
In : S = ["a", "b", "c"]

In : S = "abcd"

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

8

Python – Lists
• Before using a list, it is convenient to initialise it, which can be done with the

repetition instruction.

• They can also be initialised by comprehension (ranges come next)

• Lists are ”mutable” objects, in that they can be appended with extra elements,
extended with other lists, or have elements removed.

• Methods for list objects are available to perform these changes.

• In : L = [0]* 5
• In : L
• Out: [0,0,0,0,0]
• In : [None]*3
• In : [None, None, None]

• In : L = [i*2 for i in range(3)]
• In : L
• Out: [0,2,4]

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

9

Python – Lists
• In general, existing methods available for an object may be consulted with the dir

command.
In : L = [0]* 5
In : dir(L)
Out:
['__add__’,

.....
'__len__’,
.....

'append’,
'copy’,
'extend’,
.....

'remove',
'reverse',
'sort']

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

10

Python – Lists
• Some examples:

In : L = [1,2,3,4]
In : M = [6,8,7,8]
In : L.append(5)
In : L
Out: L = [1,2,3,4,5]
In : L.extend(M)
In : L
Out: L = [1,2,3,4,5,6,8,7,8]
In : L.remove(8)
In : L
Out: L = [1,2,3,4,5,6,7,8]

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

11

Python – Lists
• Lists are not sets, in that elements of the list have a position (index).

• Indices in a list of length n, range from 0 to n-1. Elements of a list can be accessed
by means of their index, either positive (0 to n-1, from left to right) or negative
(from -1 to –n) from right to left.

• The length of a list can be obtained with method len.

In : L = [1,2,3,4]
In : len(L)
Out: 4
In : L.__len__()
Out: 4
In : L[2]
Out: 3
In : x = L[-3]
In : x
Out: 2

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

12

Python – Lists
• Lists are mutable objects in that their state may change.

• Not only the lists can be extended and “shrinked” as seen before, but also their
elements may change.

In : L = [1,2,3,4,5,6]
In : L[3] = 9
In : L
Out: [1,2,3,9,5,6]

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

13

Python – Tuples
• Tuples are similar to lists. They can be created by enumeration with brackets

notation.

• However, tuples are immutable objects. Once created they can not be changed.

• Methods available to tuple objects can be obtained with the command dir.

In : T = (1,2,3,4,5,6)
In : T[1]
Out: 2
Out: T[1] = 9
TypeError: 'tuple' object does not support item assignment

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

14

Python – Sets
• Sets are also similar to lists, but

• their elements are not accessible by indices.

• they do not take repeated elements.

• Methods available to set objects can be obtained with the command dir.

• Sets are useful to implement dictionaries (later).

In : S = {1,2,3,1}
In : S
Out: {1,2,3}
Out: S[1]
TypeError: 'set' object does not support indexing

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

15

Python – Matrices
• Matrices (and higher order arrays) can be implemented as lists of lists.

• Their elements can be reached as before, but now there are to indices to consider
– An index for the rows
– An index to the columns

• Although all matrix operations can be implemented with nested lists, library NumPy is
very useful for linear algebra operations on vectors and arrays (later).

In : M = [[1,2,3,4],[4,5,6,7]]
In : len(M) # number of rows
Out: 2
In : len(M[0]) # number of columns
Out: 4
In : M[1][2]
Out: 6

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

16

Iterative Execution - FOR
• In many cases it is necessary to repeat a block of instructions. There are several

variants to specify such repetition, and the simplest one is with a FOR statement.

• In Python syntax

• This instruction specifies that the FOR-BLOCK

• is executed as many times as there are elements in the ITERATOR;

• In each execution the ITERATION-VAR takes the value of the corresponding
element of the ITERATOR;

• Note: The ITERATION-VAR is usually used in the FOR-BLOCK, although this is
not necessary

for ITERATION-VAR in ITERATOR:
FOR-BLOCK

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

17

Iterators - Ranges
• In Python there are several types of iterators.

• Lists / Tuples / Sets: Common iterators are lists, tuples and sets. In this case, the
iteration variable takes all the values of the list / tuple / set, one for each iteration.

• Fo example, the following snippet prints all the values of a list.

• Ranges: Another often used iterator is a range. It can be regarded as a generator of
a list, by specifying the first value, the limit value (excluded), and the step.

• For example, the same behaviour obtained above would be produced with the code:

V = [1, 3, 5]
for i in V:

print(i)

for i in range(1,6,2):
print(i)

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

18

Iterators - Ranges
• The general specification

range(first, limit, step)

• generates consecutive elements starting at first (a number), continuing with all values
obtained by adding the step (a number, different from zero) to the previous value as
long as the limit is not reached, i.e. the last element must be before that limit.

• When the step is 1 it may be omitted.

• When the first value is 0, it may also be omitted. The following ranges are equivalent

• Ranges (as lists or sets) can be empty, when the first element is greater than the
limit. This is the case of

range(0,5,1)
range(0,5)
range(5)

range(4,4,2)
range(5,4)

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

19

Iterators
• Ranges can also generate decreasing values if the step is negative.

range(first, limit, -step)

• generates consecutive elements starting with the first (a number), continuing with all
values obtained by subtracting step (a number, different from zero) to the previous
one until the limit is reached (exclusively), i.e. the last element must be greater than
limit.

• The following iterators are equivalent

• And the following ranges are empty

V = [5,3,1,-1]
range(5,-2,-1)

range(5,6,-1)
range(-5,-2,-2)

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

20

Iterators
• Iterators can also be used to initialise vectors and matrices.

• In : L = [0 for i in range(3)]
• In : L
• Out: [0,0,0]
• In : M = [[0 for i in range(2)] for j in range(3)]
• In : M
• Out: [[0,0,0],[0,0,0]]
• In : M = [[i for i in range(2)] for j in range(3)]
• Out: [[0,1,2],[0,1,2]]

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

21

Iterative Execution - FOR
• Back to the FOR statement.

• The following functions compute the same result from a vector passed as an
argument.

• What do they compute, for example with V = [1,3,5,7]) ?

– And in general?

def name_1 (V):
""" returns ??? """
s = 0
for v in V:

s = s + v
return s

def name_2 (V):
""" returns ??? """
s = 0
for i in range(len(V)):

s = s + V[i]
return s

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

22

Iterative Execution - FOR
• The previous functions use variable s as an accumulator.

– At each iteration the accumulator is updated to take into account the elements of
the vector already considered.

– The update of the accumulator variable can be viewed in “debugging” mode, i.e.
printing the values to be observed when they are updated.

In : V =[2 6 1 7]
Out: x = name_1(Z)
0
2 # 0 + 2
8 # 2 + 6
9 # 8 + 1
16 # 9 + 7
In : x
Out: 16

def name_1 (V):
""" returns ??? """
s = 0
print(s)
for v in V:

s = s + v
print(s)

return s

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

23

Iterative Execution - FOR
• The following examples uses the same technique, but include an if statement inside

the for, so that only some elements produce changes to the accumulator variable.

• What do these functions compute?

• Note that this technique can be used

• with any operation that is commutative and associative, as is the case of
operations sum, product, max and min; and

• The accumulator is initialized with the neutral element of the operation (0 for
sum, 1 for product, -inf for max and +inf for min)

def name_3(V):
""" returns ??? ""”
x = -m.inf
for v in V:

if v > x:
x = v

return x

def name_4(V):
""" returns ??? ""”
x = +m.inf
for i in range(len(V)):

if V[i] < x:
x = V[i]

return x

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

24

Iterative Execution - FOR
• Again the behaviour of these functions can be “debugged”.

In : Z =[2 6 1 7]
In : x = name_3(Z)
-inf
2
6
6
7
In : x
7

In : Z =[2 6 1 7]
In : x = name_3(Z)
+inf
2
2
1
1
In : x
1

def name_3(V):
""" returns ??? """
x = -m.inf
print(x)
for v in V:

if v > x:
x = v

print(x)
return x

def name_4(V):
""" returns ??? """
x = +m.inf
print(x)
for i in range(len(V):

if V[i] < x:
x = V[i]

print(v)
return x

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

25

Nested FORs
• When dealing with matrices it is usual to adopt two iterative variables to represent the

indices of the rows and columns of the matrix.

• This is illustrated in the following example, taking a matrix as an argument.

• What does it compute?

def name_5(M):
""" returns ??? ""”
s = 0;
print(s)
for i in range(len(M)):

for j in range(len(M[i]):
s = s + M[i][j]
print(s)

return s

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

26

Nested FORs
• Again the behaviour of this function may be debugged:

In : M =[[2,6,3],[1,0,8]]
In : x = name_5(M)
0
2 # 0 + M[0][0]
8 # 2 + M[0][1]
11 # 8 + M[0][2]
12 # 11 + M[1][0]
12 # 12 + M[1][1]
20 # 12 + M[1][2]
In : x
Out: 20

def name_5(M):
""" returns ??? ""”
s = 0;
print(s)
for i in range(len(M)):

for j in range(len(M[i]):
s = s + M[i][j]
print(s)

return s

4 October 2019 2: Functions; IF and FOR instructions in Python
Pedro Barahona

27

Nested FORs
• Actually the same result could be obtained by summing the elements of the matrix by

columns:

def name_5(M):
""" returns ??? ""”
s = 0;
print(s)
for j in range(len(M[0])):

for i in range(len(M)):
s = s + M[i][j]
print(s)

return s

In : M =[[2,6,3],[1,0,8]]
In : x = name_6(M)
0
2 # 0 + M[0][0]
3 # 2 + M[1][0]
9 # 8 + M[0][1]
9 # 11 + M[1][1]
12 # 12 + M[0][2]
20 # 12 + M[1][2]
In : x
Out: 20

