
Optimised Sorting in Vectors

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2018/2019

9 November 2018

Optimised Sorting in Vectors
• Insert Sort and Bubble Sort are useful to sort “small” vectors, due to its

complexity O(n2).

• But larger vectors require better algorithms.

• A useful strategy often used to solve complex problems is to divide them into
smaller and simpler problems, and combine the solutions of the simpler problems
to obtain the overall solution.

• Hence, several different methods have been proposed to improve this quadratic
complexity, and an animation that shows several such methods is available in URL

https://www.youtube.com/watch?v=kPRA0W1kECg

• A strategy, known as divide-and-conquer principle, is followed by several
advanced sorting algorithms, namely Merge Sort and Quick Sort.

• This principle allows not only a simple (recursive) specification, but usually leads to
a better complexity.

7: Optimised Sorting in Vectors 2

9 November 2018

Optimised Sorting in Vectors
• As we will see next, these algorithms have an asymptotical complexity of

O(n � ln(n))

• The difference between this complexity and the quadratic complexity O(n2) of the
Bubble and Insert sort algorithms can be assessed in vectors of variable size n.

7: Optimised Sorting in Vectors 3

n n2 n	•	ln(n)
10 1.000E+02 2.303E+01
100 1.000E+04 4.605E+02
1	000 1.000E+06 6.908E+03
10	000 1.000E+08 9.210E+04
100000 1.000E+10 1.151E+06
1	000	000 1.000E+12 1.382E+07
10	000	000 1.000E+14 1.612E+08

• The number difference in the
number of elementary operations is

• If an elementary operations takes 1
nsec, the time to sort the vector is

n n2 n	•	ln(n)
10 100	nsec 23	nsec
100 10	µsec 460	nsec
1	000 1	msec 6.9	µsec
10	000 100msec 92	µsec
100000 10	sec 1.2	msec
1	000	000 17	min 13.8	msec
10	000	000 28	hor 0.16	sec

9 November 2018

Optimised Sorting in Vectors
• This divide-and-conquer principle is implemented differently in these algorithms.

Merge Sort:

• Divide the vector in two sub-vectors.

• Sort both the sub-vectors.

• Merge their solutions, taking advantage of having them already sorted.

QuickSort:

• Get a pivot.

• Divide the vector into two sub-vectors, composed of all the values smaller and
larger than the pivot.

• Sort these two sub-vectors.

• Append their solutions (virtually, since the vector is always the same)

7: Optimised Sorting in Vectors 4

9 November 2018

Merge Sort
• As any recursive algorithm, the recursive function checks whether the recursion

should stop, i.e. the problem is sufficiently simple to be solved directly.

• Here, we stop when the vector has length 1, in which case it is already sorted.

• Otherwise the function calls itself to obtain the sorted versions of the Left and Right
sub-vectors, and merges them.

7: Optimised Sorting in Vectors 5

function S = merge_sort(V);
% S is the sorted version of vector V
% obtained by the merge sort method

n = length(V);
if n > 1

mid = floor((1+n)/2); % get mid index
L = merge_sort(V(1:mid)); % left subvector
R = merge_sort(V(mid+1:end)); % right subvector
S = merge(L,R)

else
S = V;

end
end

9 November 2018

Merge Sort
• Merging two sorted lists is straightforward, and is implemented recursively below.

• The recursion stops when one of the sub-vectors is empty, in which case the
merged vector is obtained by appending the two sub-vectors (since one is empty).

• Otherwise, the smaller of the two initial values is the initial value of the solution,
and the rest is obtained by merging the remaining vector with the other sub-vector.

7: Optimised Sorting in Vectors 6

function S = merge(L,R);
% S is a sorted vector, obtained by
% merging the two sorted vectors L and R

if length(L) == 0 || length(R) == 0
S = [L,R];

elseif L(1) <= R(1)
S = [L(1),merge(L(2:end),R)];

else % R(1) < L(1)
S = [R(1),merge(L,R(2:end))];

end;
end

9 November 2018

Merge Sort – Complexity
• The asymptotical complexity of Merge Sort can be obtained as follows (assuming a

vector with a size n = 2k; the analysis of other sizes require some rounding that
does not affect the asymptotical complexity).

• The complexity of sorting a vector with n = 2k elements is the complexity of sorting
two vectors of 2k-1 elements plus merging two vectors of 2k-1 elements each. This
merge requires one operation per element, hence requires 2k operations.

• Hence, and abusing notation, we have
C(2k) = 2 • C(2k-1) + 2k

• Now, we can use this recursive definition to obtain
C(2k) = 2 • C(2k-1) + 2k

= 2 [2 • C(2k-2) + 2k-1] + 2k

= 22 • C(2k-2) + 2 • 2k

• More generally we have
C(2k) = 2m • C(2k-m) + m • 2k

7: Optimised Sorting in Vectors 7

9 November 2018

Merge Sort – Complexity

• Moreover, the complexity of merge_sorting a vector with size 1 is 1 (the function

just returns the vector).

• Combining the previous result

C(2k) = 2m*C(2k-m) + m*2k

with the fact that for m = k we have

C(2k-k) = C(1) = 1

we finally obtain

C(2k) = 2k • C(2k-k) + k • 2k

= 2k • 1 + k • 2k

= 2k (k+1) ≈ 2k (k+1)

• Hence the asymptotical complexity of O(2k • k). Finally, given that the size of the

initial vector is n = 2k (or k = log(n)), we can express the complexity in terms of the

size of the input vector and so, the complexity of merge sort for a vector of size n is

O(n log(n)).

7: Optimised Sorting in Vectors 8

9 November 2018

Quick Sort
• Although Merge Sort offers good asymptotical complexity, the fact that it requires

the creation of several sub-vectors to be merged may be regarded as a significant
disadvantage, specially in case of very large vectors.

• An alternative would be to work always in elements of the vector, such that only
accesses to an existing vector would be required.

• This can of course be done with Merge Sort, but then the merge of two subvector
within a vector is not very obvious (left as an exercise).

• This is not so with Quick Sort that does not require such merging. Basically, it
analyses a vector V of size n and swaps if necessary its elements until

• An element, the pivot, occupies some mid position k in the vector (Vk = p).

• All elements V(i), 1 ≤ i < k, are less (or equal) than the pivot (V(i) ≤ p).

• All elements V(j) (k < i ≤ n), are greater (or equal) than the pivot (V(j) ≥ p).

• Then all that is required is to sort (e.g. through a recursive call of Quick Sort) the
sub-vectors left and right of position k.

7: Optimised Sorting in Vectors 9

9 November 2018

Quick Sort
• In more detail, Quick Sort adopts the divide-and-conquer principle, but in a

different way. The main steps of the function are the following:

1. An element of the vector, p, is selected for pivot. Typically, this is the element that
occurs in the mid position of the vector (but this is not necessarily so).

2. Then the vector is swept with two indices starting at both ends of the vector range:
• Index i, starts at 1, and increases during the sweep
• Index j, starts at n, and decreases during the sweep

3. The sweep ends when both indices i and j take the same value, k. At this point,
• V(k) = p;
• all values in positions less than i are less or equal than p; and
• all values in positions greater than i are greater or equal than p.

4. Then, all that is needed is to sort the lower and upper sub-vectors, which can of
course be done recursively.

5. Some examples illustrate the algorithm.

7: Optimised Sorting in Vectors 10

9 November 2018

Quick Sort

7: Optimised Sorting in Vectors 11

i	=	1 j	=	92 9 51 7 3 8 6 4

i	->	2 9	<-	j1 7 3 8 6 4 2 9 5

swap1 5 3 8 6 4 2 9 7

i	=	2 j	=	91 5 3 8 6 4 9 72

i	->	4 7	<-	j1 5 3 8 6 4 2 9 7

swap8 9 71 5 3 2 6 4

i	=	4 j	=	74 8 9 71 5 3 2 6

i	->	5 6	<-	j9 71 5 3 2 6 4 8

swap1 5 3 2 4 6 8 9 7

i	=	5 j	=	61 5 3 2 4 6 8 9 7

i	->	6 				6 6	<-	j9 71 5 3 2 4 8

k	=	6 stop71 5 3 2 4 6 8 9

lo	=	1;	hi	=	9,	mid	=	5;	pivot	=	V(mid)	=	6

9 November 2018

Quick Sort

7: Optimised Sorting in Vectors 12

lo	=	1;	hi	=	9,	mid	=	5;	pivot	=	V(mid)	=	8

i	=	1 j	=	92 6 51 7 3 9 8 4

i	->	4 9	<-	j1 7 3 9 8 4 2 6 5

swap1 7 3 5 8 4 2 6 9

i	=	4 j	=	91 7 3 5 8 4 2 6 9

i	->	5 8	<-	j1 7 3 5 8 4 2 6 9

swap1 7 3 5 6 4 92 8

i	=	5 j	=	81 7 3 5 6 4 2 8 9

i	->	8 				8 8	<-	j6 4 2 91 7 3 5

k	=	8 				8 stop1 7 3 5 6 4 2 9

• Another example, where the pivot is quite skewed.

• The remaining vectors to sort are quite different in size, but the algorithm is safe.

9 November 2018

Quick Sort
• The basic structure of the quick_sort function are shown below. Note that the

algorithm always deal with the same vector, but with different parts of it, namely
between the indices lo and hi (initially they should be 1 and length(V)).

• The sweeping illustrated before is implemented in function partition, that returns
• the index k where the pivot lies, and the vector V updated so that
• elements in indices less/greater than k are less/greater or equal to pivot V(k).

• Then a recursive call is made to sort the left and right “parts” of V

7: Optimised Sorting in Vectors 13

function V = quick_sort(V, lo, hi)
if lo < hi

% sweep and change V to obtain an index k
% such that all values before (after) k are
% less (greater) or equal than V(k).
[V, k] = partition(V,lo,hi);
V = quick_sort(V, lo, k-1);
V = quick_sort(V, k+1, hi);

end
end

9 November 2018

Quick Sort
• The sweeping starts with i = lo and j = hi, and the pivot is arbitrarily selected as the

element in the midpoint of the range of interest.

• The sweeping proceeds while i < j as follows:

• Indices i/j increase/decrease until an element is found no smaller/larger than the pivot

• They are then swapped, unless V(i) and V(j) both take the value of the pivot

7: Optimised Sorting in Vectors 14

function [V, k] = partition(V,lo,hi)
i = lo; j = hi; mid = round((lo+hi)/2);
pivot = V(mid);
while i < j

while V(i) < pivot i = i + 1; end
while V(j) > pivot j = j - 1; end
if V(i) > V(j) V = swap(V,i,j) end

end

9 November 2018

Quick Sort
• Eventually, i becomes equal to j (and V(i) = pivot) so the returned k is equated to i

• In fact there might be the case that V(i) = V(j) = pivot but i < j
• If the vector has repeated elements, and one was chosen for pivot.

7: Optimised Sorting in Vectors 15

function [V, k] = partition(V,lo,hi)
i = lo; j = hi; mid = round((lo+hi)/2);
pivot = V(mid);
while i < j

while V(i) < pivot i = i + 1; end
while V(j) > pivot j = j - 1; end
if V(i) > V(j) V = swap(V,i,j) end

end
k = i;

end

9 November 2018

Quick Sort

7: Optimised Sorting in Vectors 16

lo	=	1;	hi	=	9,	mid	=	5;	pivot	=	V(mid)	=	6

i	=	1 j	=	91 2 3 5 6 4 9 6 7

i	->	5 8	<-	j1 2 3 5 6 4 9 6 7

i	=>	6 j	=	81 2 3 5 6 4 9 6 7

i	->	7 8	<-	j1 2 3 5 6 4 9 6 7

swap1 2 3 5 6 4 96 7

i	=	7 j	=	84 61 2 3 5 6 9 7

i	=	7 				6 7	<-	j1 2 3 5 6 4 9 7

k	=	7 stop4 91 2 3 5 6 76

swap??1 2 3 5 6 4 9 6 7

• A more problematic example, with repetitions, namely when the chosen pivot
appears more than once in the vector.

• Note that when V(i) and V(j) are both equal to the pivot and i < j than i must be
increased to continue the sweep .

9 November 2018

Quick Sort
• Eventually, i becomes equal to j (and V(i) = pivot) so the returned k is equated to i

• In fact there might be the case that V(i) = V(j) = pivot but i < j
• If the vector has repeated elements, and one was chosen for pivot.

• In this case, index i is incremented, as explained in the previous animated
example, so that the sweep proceeds until i = j

7: Optimised Sorting in Vectors 17

function [V, k] = partition(V,lo,hi)
i = lo; j = hi; mid = round((lo+hi)/2);
pivot = V(mid);
while i < j

if V(i) == pivot && V(j) == pivot
i = i + 1;

end
while V(i) < pivot i = i + 1; end
while V(j) > pivot j = j - 1; end
if V(i) > V(j) V = swap(V,i,j) end

end
k = i;

end

9 November 2018

Quick Sort
• Finally, the swapping of two elements of the vector with indices i and j is

implemented in the obvious way.

7: Optimised Sorting in Vectors 18

function V = swap(V,i,j)
aux = V(i);
V(i) = V(j);
V(j) = aux;

end

9 November 2018

Quick Sort – Complexity
• The asymptotical complexity of Quick Sort can be obtained similarly to what was

done with Merge Sort, but is not so “clear”, since it depends on the returned
position k of the pivot.

• If k is the mid point between lo and hi, then each range of size n = 2k is divided into
two equal subranges of size n/2 -1.

• Hence, the analysis is similar to what was done with Merge Sort, taking into
account that function partition visits all n elements of the range once, and swaps
elements a fraction of n, i.e. a • 2k times (where a is less than 1), hence

C(2k) = 2 • C(2k-1) + (1+a) • 2k = 2 • C(2k-1) + (1+a) • 2k

• This is similar to what was done before and leads to

C(2k) = 2k • C(2k-k) + (1+a) • k • 2k

= 2k • (1+ 1 + a+ k)

thus leading to the same level of complexity of

O(n log(n))

7: Optimised Sorting in Vectors 19

9 November 2018

Quick Sort – Complexity
• In fact, although Quick Sort tends to be very efficient, its efficiency depends on a

number of factors, overall, the choice of the pivot.

• In the limit, if the pivot is the smallest or the largest element of the vector, in each
call of a vector with a range of size n, rather than having 2 subranges of size n/2
there is one empty range and another of size n-1.

• Hence, and simplifying, the complexity becomes

C ≈ n + (n-1) + (n-2) + … 1
≈ n (n+1) / 2
≈ O(n2)

i.e. quadratic, as in the case of Bubble Sort

• In fact, the number of accesses, a, to elements of the vector V, and the number of
swaps, s, can be “counted” in a modified version of the algorithm, with signature

function [V, a, s] = quick_sort(V, lo, hi)

which is left as exercise.

7: Optimised Sorting in Vectors 20

