
Test #1 – 21 December 2018 Computational Methods - 1 / 7 -

Mestrado em Matemática e Aplicações
Especialização em Matemática Financeira

2018/2019, 1º semester

Computational Methods
Test #1 – 21 December 2018

Duration: 2 hours
Close Book (no consulting materials are allowed)

 Student nº ______ Name: __

1. (1 pt) What is the value of variable x at the end of the following program

i = 1;
s = 1;
x = 0;
while x < 20
 x = x + s * i;
 s = 1 - s;
 i = i + 1;
end

2. (1 pt) What integer value should k take so that, at the end of the program below, variable x takes
value 8.

M = [1 4 k; 2 4 6]
x = -inf;
for i = 1:2
 for j = 1:2:3
 if M(i,j) - M(1,1) > x

 x = M(i,j)-M(1,1)
 end

 end
end

3. (1 pt) Given two vectors, A and B, with the same number of elements, assign an expression to
variable c that computes whether there are at least 3 elements of A that are different from the
corresponding elements of B. For example, for A = [4,9,7,1,4] and B = [4,8,7,1,3]
the expression should assign 0 to c, since there are only 2 elements of vectors A and B (the 2nd
and the 5th) that are different.

4. (1 pt) After running the sequence of instructions below, what is the value of the variable s?
 A = [1 8 2 6];
B = [6 3 9 3];
s = 0
for i = 1:length(A)
 s = s + abs(A(i)-B(i));
end
s = s / length(A);

 Answer: s = 5

Answer: x = 25

Answer: c = sum(A == B) >= 3

Answer: k = 9

Test #1 – 21 December 2018 Computational Methods - 2 / 7 -

5. (1.5 pt) Given the text file “testing.txt” containing the text below

This is a file with 3 lines
This line is the second of these lines.
And this is the last line.

what is the value returned by the call p = count_lines(“i”,3)?

6. (1.5 pt) What is the approximate value that you expect from the execution of the function below
when the call equal_dice_pair(600)is made.

7. (2 pt) What is the final value of matrix M computed by the program below?

function n = count_lines(ch, k);
 fid = fopen(“testing.txt”, “r”)
 n = 0;
 while !feof(fid)
 line = fgetl(fid);
 c = 0;
 for i = 1:length(line)
 c = c + (line(i) == ch);
 end
 n = n + (c > k)
 end
 fclose(fid);
end

 Answer: p = 2

function t = equal_dice_pair(a);
 c = 0;
 for k = 1:n
 dice_1 = ceiling(rand()*6);
 dice_2 = ceiling(rand()*6);
 c = c + (dice_1 == dice_2);
 end;
end

 Answer: 100

m = 3;
n = 4;
M = zeros(m,n);
for i = 1:m
 for j = 1:n
 M(i,j) = (i-j)^2;
 end
end

 Answer:

 M = [0 1 4 9;
 1 0 1 4;
 4 1 0 1]

Test #1 – 21 December 2018 Computational Methods - 3 / 7 -

8. (2 pt) Complete the specification of the function below so that it returns the average absolute
difference between the elements of vector V wrt their mean value. For example, the call

V = [8 1 4 2 5]; x = abs_dev(V)

should assign a = 2 (since the average value of the elements of V is 4, the sum of the
absolute differences is 4+3+0+2+1 = 10), and hence its mean is 10/5 = 2.

function a = abs_dev(V);

end

9. (2 pt) Complete the specification of the function below so that it returns a column vector where
each element is the maximum value of the elements of the corresponding rows of input matrix
M. For example, for M = [1 4 5; 4 8 7; 7 4 2] the call V = largest_in_rows(M)
should return vector V = [5; 8; 7].

function V = largest_in_row(M);

 end

 s = 0;
 n = length(V);
 for i = 1:n
 s = s + V(i);
 end
 m = s / n;
 d = 0;
 for i = 1:n
 d = d + abs(V(i)-m);
 end
 a = d / n;

[m,n] = size(M);
V = zeros(n,1);
for i = 1:m
 lgt = -inf;
 for j = 1:n;
 if M(i,j) > lgt
 lgt = M(i,j);
 end
 V(i) = lgt;
end

Test #1 – 21 December 2018 Computational Methods - 4 / 7 -

10. (2 pt) As you will recognise, the function below implements the sorting of a vector V by means
of the insert_sort algorithm. As you know, this algorithm has worst case complexity of O(n2),
(where n is the length of vector V), since in the worst case the algorithm requires n·(n+1)/2
insertions of values in the different positions of vector S.

Adapt the function below, so that it not only returns S, the sorted version of vector V, but also
the actual number c of times there is an insertion of a value in any position of vector S. For
example, if V is already sorted there are only n insertions.

function [S,c] = insert_sort(V)
% returns a vector S, which is the sorted version
% of a vector V, whose elements are all non-negative
% numbers. It also returns
% c: the number of comparisons that the function performs
% between any two values.

 n = length(V);

 S = zeros(1,n);
 c = 0;
 for i = 1:n

 j = i;

 while j > 1 && S(j-1) > V(i)
 c = c + 1;
 S(j) = S(j-1);

 j = j - 1;

 end

 S(j) = V(i);
 c = c + 1;
 end

end

Test #1 – 21 December 2018 Computational Methods - 5 / 7 -

11. (2.5 pt) Specify the function below that, for a graph specified in file GraphFile, removes a
vertex v, and all the arcs connecting it to the other vertices of the graph. Then it checks whether
the reduced graph G is connected and, if so, writes into a file TreeFile the minimum spanning
tree of the reduced graph with the same format of the input file. The returned value c indicates
whether the reduced graph is connected.

function [G, c] = reduced_spanning_tree(graphFile, v, treeFile);

end

	

G = read_graph(graphFile);

n = size(G,1);

G = [G(1:v-1,:); G(v+1:n,:)]; % eliminates row v

G = [G(:,1:v-1), G(:,v+1:n)]; % eliminates col v

c = connected(G)

if c

 T = prim(G);

 write_graph(T, treeFile)

end

NOTE: Alternative to lines 3 and 4

for i = n:-1:v+1 % eliminates row v

 for j = 1:n

 G(i-1,j) = G(i,j)

 end

end

for j = n:-1:v+1 % eliminates col v

 for i = 1:n-1

 G(i,j-1) = G(i,j)

 end

end

Test #1 – 21 December 2018 Computational Methods - 6 / 7 -

12. (2.5 pt) Assume a network of cities represented in a graph represented by its adjacency matrix

G (where each city corresponds to a vertex of the graph and G(i,j) represents the length of an
arc between vertices i and j; G(i,j)=inf if there is no direct connection). You want to locate a
warehouse in one of the cities, so that it is closest in average to all the other cities.
Specify the function below that, for a graph specified by its adjacency matrix G (assumed to be
connected) returns:

• v: the vertex where you should locate the warehouse; and
• d: the average distance from this vertex to all the other vertices;

function [v,d] = warehouse_location(G);

End

 S = floyd(G);
 n = size(S,1);
 amin = inf;
 for i = 1:n
 a = 0;
 for j = 1:n
 a = a + S(i,j);
 end
 a
 if a < amin
 amin = a;
 v = i;
 end
 end
 d = amin / (n - 1);

Test #1 – 21 December 2018 Computational Methods - 7 / 7 -

Annex

In questions 11 and 12 you should consider the functions that were studied in the classes regarding
weighted undirected graphs where the weights may be interpreted as distances between vertices of
the graph. If no edge exists between two vertices of a graph G = <V, E>, a virtual edge with value
Inf is assumed in the adjacency matrix G of the graph.

• function G = read_graph(filename)
- returns the adjacency matrix, G, of a weighted undirected graph

specified in file with <filename>. The first line of the graph
contains the number of vertices and arcs, and the subsequent
lines the triple <n1, n2, w>, where w is the weight of the edge
connecting the vertices n1 and n2 (n1 < n2). The integers n1,
n2 and w are separated by semicolons (“;”).

• function G = write_graph(G, filename)
- writes graph G, given by its adjacency matrix, in file <filename>, with the format specified

above.

• function b = connected(G)
- Boolean b indicates whether the weighted undirected graph specified by adjacency matrix, G,

is connected.

• function T = prim(G)
- Returns a minimum spanning tree, T, of the weighted undirected graph G. Both T and G are

represented by the corresponding adjacency matrices.

• function S = floyd(G)
- returns the matrix S with the shortest distances between any two vertices of the graph G

specified by adjacency matrix, G.

G =
 0 4 6 3 9
 4 0 Inf Inf 8
 6 Inf 0 2 Inf
 3 Inf 2 0 5
 9 8 Inf 5 0

T =
 0 4 Inf 3 Inf
 4 0 Inf Inf Inf
 Inf Inf 0 2 Inf
 3 Inf 2 0 5
 Inf Inf Inf 5 0

S =
 0 4 5 3 8
 4 0 9 7 8
 5 9 0 2 7
 3 7 2 0 5
 8 8 7 5 0

