
Graph Algorithms:
Dynamic Programming

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2017/2018

Dynamic Programming: Algorithms for Graphs
• Most graph properties address optimisation goals, namely

a. Shortest paths

b. Minimum Spanning Trees

c. Minimum Hamiltonian tours (Traveling Salesman)

d. Minimum number of colours

• Some of these properties (e.g. a and b, but not c nor d), can be computed by
polynomial algorithms.

• In most cases, algorithms to compute the optima may follow a methodology,
dynamic programming, based on Mathematical Induction on the Integers:

• Once an optimal solution is obtained with n nodes, extend it to n+1 nodes.

• We will see two examples of this, in the following algorithms

• Minimum Spanning Tree – Prim’s Algorithm

• Shortest Paths – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms6 December 2017 2

Minimum Spanning Tree: Prim’s Algorithm
• A spanning tree is a subset of a connected graph that has the topology of a tree

and covers all nodes of the graph.

• It has many applications, namely to provide services to a number of sites (the
nodes) that can be interconnected in several ways (by a graph), but using the a
minimal number of connections that allow all sites to be reached, i.e. a single path
connecting any two nodes.

• Among these spanning trees one is usually interested in minimum spanning
trees (MST) that minimise the sum of the costs of the arcs selected for the tree.

• There are many polynomial algorithms that may be used to compute these MSTs,
the most common ones are the Kruskal’s and the Prim’s algorithms.

• Given the similarities between the latter and the algorithm to check connectedness
of a graph, we will address now the Prim’s Algorithm.

Dynamic Programming: Graph Algorithms6 December 2017 3

Minimum Spanning Tree: Prim’s Algorithm
• The Prim�s algorithm is an example of Dynamic Programming that extends a MST

with n nodes to n+1 nodes, with an eager selection of the new node (i.e. once the
node is selected, the selection is not backtracked for alternatives).

• The algorithm can be understood as a process of increasing the size of a current
MST, starting with 1 node and ending with all the nodes, and specified as follows:

• Maintain two sets of nodes: In and Out, where In is the set of nodes already
included in a current MST and Out are those not yet included.

1. Select arbitrarily a node from the tree to initialise the In set, and put the
others in the Out set;

2. While there are nodes in the Out set,

i. Find which node from the Out set has an arc of least cost to one
connecting it to one of the nodes of the In set;

ii. Transfer the node from the Out set to the In set and include the least
cost arc in the current MST.

Dynamic Programming: Graph Algorithms6 December 2017 4

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Start with an arbitrary node in the In
set

• Start with the Out set with all the
other nodes

• Initialise the MST to empty

In = [e]
Out = [a,b,c,d,f,g]

MST = {}

e

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum cost

In = [e]
Out = [a,b,c,d,f,g]

MST = {}

5

b

f

g

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [e,b]
Out = [a,c,d,e,f,g]

MST = {<b,e>}

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

b

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,e]
Out = [a,c,d,f,g]

MST = {<b,e>}

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum costa

c

f

g

3

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e]
Out = [a,d,f,g]

MST = {<b,e>, <b,c>}

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

c

2

a

c
db

e
f

6
4

9

43

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum cost

In = [b,c,e]
Out = [a,d,f,g]

MST = {<b,e>, <b,c>}

a

f

g

2

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e,f,]
Out = [a,d,g]

MST = {<b,e>, <b,c>,
<c,f>}

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

f

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e,f]
Out = [a,d,g]

MST = {<b,e>, <b,c>,
<c,f>}

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum costa

d

g

4

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,d,e,f]
Out = [a,g]

MST = {<b,e>, <b,c>,
<c,f>, <d,f>}

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

d

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,d,e,f]
Out = [a,g]

MST = {<b,e>, <b,c>,
<c,f>, <d,f>}

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum costa

g

4

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

In = [a,b,c,d,e,f]
Out = [g]

MST = {<b,e>, <b,c>,
<c,f>, <d,f>
<a,c>}

a

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum cost

g7

In = [a,b,c,d,e,f]
Out = [g]

MST = {<b,e>, <b,c>,
<c,f>, <d,f>
<a,c>}

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

In = [a,b,c,d,e,f,g]
Out = []

MST = {<b,e>, <b,c>,
<c,f>, <d,f>
<a,c>, <e,g>}

g

a

c
db

e
f

6
4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = []
Out = [a,b,c,d,e,f,g]

MST = {<b,e>, <b,c>,
<a,c>, <c,f>,
<e,g>, <d,f>}

• The Out set is now empty

• Return the MST.

Minimum Spanning Tree: Prim’s Algorithm
• Several variants can be used in the implementation of the Prim’s algorithm, using

appropriate data structures that make it more efficient. Here we present a naïf
implementation that nonetheless is sufficient for relatively large graphs.

1. Select arbitrarily a node from the tree to initialise the In set, and put the
others in the Out set (we select node 1);

2. While there are nodes in the Out set,
i. Find which node from the Out set has an arc of least cost to one

connecting it to one of the nodes of the In set;
ii. Transfer the node from the Out set to the In set and include the least

cost arc in the current MST.

Dynamic Programming: Graph Algorithms

function T = prim(G);
n = size(G,1);
T = ones(n)*Inf;
In = [1]; Out = 2:n;
while length(Out) > 0

...

T = ...; In = ...; Out = ...
end

end

6 December 2017 19

Minimum Spanning Tree: Prim’s Algorithm
• The core of the algorithm is to find the arc with least cost connecting an arc

between node of the In and Out sets (implemented as vectors).

• This can be performed with a standard search for a minimum value in a matrix, but
in this case, restricted to indices of nodes in the In and Out sets.

• Additionally, the position p of the node in the Out vector is stored, to make it easy
to remove it from the Out set.

• Finally, the arc is added to T, the current MST, and the In and Out sets updated.
minArc = Inf;
for i = 1: length(In)

for j = 1:length(Out)
if G(In(i),Out(j)) < minArc

minArc = G(In(i),Out(j));
u = In(i); v = Out(j);
p = j;

end;
end;

end;
T(u,v) = G(u,v); T(v,u) = G(v,u)
In = [v,In]; Out = [Out(1:p-1),Out(p+1:end)]

Dynamic Programming: Graph Algorithms6 December 2017 20

Minimum Spanning Tree: Prim’s Algorithm
• The complete algorithm is shown below:

function T = prim(G);
n = size(G,1);
T = ones(n)*Inf;
In = [1]; Out = 2:n;
while length(Out) > 0

minArc = Inf;
for i = 1: length(In)

for j = 1:length(Out)
if G(In(i),Out(j)) < minArc

minArc = G(In(i),Out(j));
u = In(i); v = Out(j);
p = j;

end;
end;

end;
T(u,v) = G(u,v); T(v,u) = G(v,u)
In = [v,In]; Out = [Out(1:p-1),Out(p+1:end)]

end
end

Dynamic Programming: Graph Algorithms6 December 2017 21

Minimum Spanning Tree: Prim’s Algorithm
• It is easy to prove, by induction, that the algorithm is correct. If T is an MST with least

cost with n nodes, adding to it the least cost arc will make it an MST with least cost
with n+1 nodes (adding any other arc would lead to a higher cost spanning tree).

• As to the worst cost complexity of the algorithm, with this implementation, we notice
that the while loop is executed n-1 times (n is the number of nodes of the graph, |V|).

• Finding the minimal cost arc requires two nested loops over ranges with k and n-k
values, that is at most n2/4 executions (for k = n/2) of the body of the loop

• All operations in the loop are “basic”, and so the complexity of this implementation of
the Prim’s algorithm is O(n*n2/4) i.e. O(|V|3) (where |V| = n).

• Note: Implementations with priority queues and other advanced data structures have
better complexity, namely O(|E|+Vlog|V|).

Dynamic Programming: Graph Algorithms

for i = 1: length(In)
for j = 1:length(Out)

…
endfor;

endfor

6 December 2017 22

Shortest Paths – Floyd-Warshall’s Algorithm
• There are many algorithms for finding shortest paths between nodes of weighted

graphs. They include algorithms to find one shortest path between two nodes , like

the Dijskstra algorith, or to find all shortest paths between any two nodes of the

graph, namely the Floyd-Warshall’s (FW) algorithm.

• As the previous one, the FW algorithm explores dynamic programming in the

following way:

• If a shortest path is considered between any two nodes, considering all paths through

a List of In nodes with n nodes, these shortest paths can be updated by extending
the list of In nodes with an extra node.

• Starting with an empty List, and including one node at a time, the final results is the

set of shortest paths between any two nodes.

Dynamic Programming: Graph Algorithms6 December 2017 23

Shortest Paths – Floyd-Warshall’s Algorithm
• The algorithm can thus be specified as follows:

1. Initialise a matrix S of shortest paths with the adjacency matrix, that is only

considering the direct distances between any two nodes.
• Of course, nodes that are not connected by an arc have infinite distance

between them at this stage

1. Now, for all values k from 1 to n iterate
• On iteration k, update S, by considering all indirect paths passing through

node k.

3. After the last iteration the set of all shortest paths between all nodes is stored
in matrix S.

• Notice that this algorithm only computes the paths with shortest distance between

any two nodes but does not return what these paths are.

• In fact, a small addition to the algorithm allows the paths to be reconstructed.

Dynamic Programming: Graph Algorithms6 December 2017 24

• The implementation of this algorithm is shown below:

• The external for loop guarantees that all paths, between nodes i and j, consider, all
the paths through nodes k (1, 2, 3, …, n), previously computed.

• The shortest paths are updated by considering the triangular inequality, with paths
passing through the previous values of k.

Dynamic Programming: Graph Algorithms6 December 2017 25

function S = floyd(M)
S = M;
n = size(S,1);
for i = 1:n S(i,i) = 0; end
for k = 1:n

for i = 1:n
for j = 1:n

if S(i,k) + S(k,j) < S(i,j)
S(i,j) = S(i,k) + S(k,j);

end
end

end
end

end

Shortest Paths – Floyd-Warshall’s Algorithm

Shortest Paths – Floyd-Warshall’s Algorithm
• The correction of the algorithm can be proved by induction on the number of nodes

considered in indirect paths (left as exercise).

• As to the complexity, it is easy to see that the algorithm requires 3 nested loops of
size n, with a basic operation in the body,

• The complexity of the algorithm is thus O(|V|3).

• Notice that algorithms to compute shortest paths between 2 nodes, like the Dijskstra

algorithm have complexity O(|V|2), but only consider a pair (not all) of nodes.

Dynamic Programming: Graph Algorithms6 December 2017 26

for k = 1:n
for i = 1:n

for j = 1:n
if S(i,k) + S(k,j) < S(i,j)

S(i,j) = S(i,k) + S(k,j);
end

end
end

end
end

Path Reconstruction – Floyd-Warshall’s Algorithm
• The previous algorithm does not provide the shortest paths between any two nodes,

but rather the shortest distances of any path between the nodes.

• Nevertheless, these paths may be easily reconstructed if the initial arc of any
shortest path between two nodes is recorded in a matrix Next (for next node).

• For every pair <i,j> the matrix is initialised with j, i.e. it assumes that a direct path
from i to j with no intermediate nodes is the best (so far).

• In the inner loop of the FW algorithm, if a new shortest path is found, the new leading
arc is updated accordingly

Dynamic Programming: Graph Algorithms6 December 2017 27

for i = 1:n
for j = 1:n

Next(i,j) = j;
end

end

if S(i,k) + S(k,j) < S(i,j)
S(i,j) = S(i,k) + S(k,j);
Next(i,j) = Next(i,k);

end

• The extended FW algorithm is shown below, returning the Next matrix.

Path Reconstruction – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms6 December 2017 28

function [S,Next] = floyd(M)
S = M;
n = size(S,1);
for i = 1:n

for j = 1:n
Next(i,j) = j;

end
end
for k = 1:n

for i = 1:n
for j = 1:n

if S(i,k) + S(k,j) < S(i,j)
S(i,j) = S(i,k) + S(k,j);
Next(i,j) = Next(i,k);

end
end

end
end

end

• Once the matrix Next is returned the path between any two nodes, u and v, can be
obtained by following the trail indicated by this matrix, as shown below

• The first test checks whether there is a “real” path between nodes u and v.

• Otherwise the path is “reconstructed”, starting iin node u.

• With this reconstruction technique, the complexity of the FW algorithm is not
changed, and the paths are only computed when needed.

Path Reconstruction – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms6 December 2017 29

function P = path(u,v,Next)
if N(u,v) == inf

P = [];
return;

end
P = [u];
while u != v

u = Next(u,v)
P = [P,u];

end
end

