
Structures; More on File Input / Output

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2017/2018

20 October 2017 5: Structures; More on File Inpiut / Output 1

20 October 2017

Structures
• Arrays (vectors, matrices, or multi-arrays) are very convenient structures to

organize numerical information, since each “cell” should contain a number.

• In many cases, information is not only numeric, e.g. it includes text (we do not
consider other types of information, such as visual or sound or video).

• Moreover, the data is organized in a mixed way, combining text and numerical
information in “records”.

• Take for example the information about the employees of a certain company. For
each employee we may consider:

• id – integer, representing a unique identification number in the company

• date – text, in format YYYY-MM-DD, representing the date of employment

• name – text, with the name of the employee

• salary – real number, representing the monthly salary of the employee

5: Structures; More on File Inpiut / Output 2

20 October 2017

Structures
• Although complex information is better maintained in a database, in simple

applications, this heterogeneous information may be organized in a record, or in
the MATLAB notation (borrowed from C) in a structure.

• A structure is similar to a vector with two main differences.

• Different positions may contains different types of data; and

• Positions are identified by field names, following the name after a “.”.
Example:

• An employee, emp, may be represented by a structure, where fields have values:
• id – 98
• name – Rui Silva
• date – 2011-10-23
• salary – 1654.3

5: Structures; More on File Inpiut / Output 3

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3

20 October 2017

Structures
• A structure may be initialised by simply assigning values of its fields.

• Different positions may contains different types of data; and

• Positions are identified by field names, following the name after a dot (“.”).

5: Structures; More on File Inpiut / Output 4

>> emp.name = “Rui Silva”;
>> emp.id = 98;
>> emp.date = “2011-10-23”;
>> emp.salary = 1654.30;
>> emp
emp =

scalar structure containing the fields:
id = 35
name = Rui Silva
date = 2011-10-23
salary = 1654.3

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3

20 October 2017

Structures
• Alternatively, a structure may be initialised by a simple instruction, identifying the

fields and their values, as shown below;

• Note: In this notation, the names of the fields should be given as strings, i.e.
delimited by quotation marks (“) or by apostrophes (‘).

5: Structures; More on File Inpiut / Output 5

>> emp2 = struct(“id”, 98, name, “Rui Silva”,
date, “2011-10-23”, salary, 1654.30)

emp2 =
scalar structure containing the fields:

id = 35
name = Rui Silva
date = 2011-10-23
salary = 1654.3

>>

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3

20 October 2017

Structures
• Once defined a structure, the data of the fields may be accessed “individually”, by

using the “dot notation”.

• Note: the types of the fields are different (numbers and strings and are dealt with
differently.

5: Structures; More on File Inpiut / Output 6

>> emp = struct(“id”, 35, name, “Rui Silva”,
date, “2011-10-23”, salary, 1654.30);

>> emp.name
ans = Rui Silva
>> double = emp.salary * 2
double = 3308.6
>> next_emp_id = emp.id + 1
next_emp_id = 36
>> next_day = emp.date + 1
Next_day = 51 49 50 50 46 50 49 46 51 52

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3

20 October 2017

Structure Arrays
• Most applications require to maintain several records in a “table”, i.e. a set of

records of the same type, organised as a “vector”, i.e. each with its index.

• Complex applications, requiring several tables, should of course be supported in
databases. Nevertheless, for simple applications, tables can be directly modelled
by moe general programming languages.

• In MATLAB, this table data structure is available as a structure array. A table of
employees may contain several records, each with the information of an employee.

• MATLAB is very “permissive” regarding these structure arrays. It is good practice
that all records have the same fields, and that these are defined before the
structure array is filled with information.

5: Structures; More on File Inpiut / Output 7

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays
• Structure arrays share many properties of “usual” arrays, and in particular

• Their size is available through function length;
• In fact a structured array has 2 dimensions, but is similar to a row vector,

whose elements are structures

• Their ranges always start in index 1;

• Structure sub-arrays may be obtained by a projection operation, and are
composed of the structures whose indices are selected
• Projection on the fields is not directly available, and must be programmed

if needed.

• As any vector, elements may be deleted by assigning them the empty ([])
value.
• The remaining elements are shifted “downwards” so that no “holes” are

created in the structured array

5: Structures; More on File Inpiut / Output 8

20 October 2017

Structure Arrays
• Example: Creating the structure array

5: Structures; More on File Inpiut / Output 9

>> emp = struct("id", 98, "name", "Rui Silva",
"date", "2011-10-23", "salary", 1654.30);

>> emps(1) = emp;
>> emps(2) = struct("id", 56, "name", "Maria Santos",

"date", "2008-12-18", "salary", 1742.4);
>> emps(3) = struct("id", 43, "name", "Carlos Dias",

"date", "2003-04-12", "salary", 2017.6);
>> emps(4) = struct("id", 12, "name", "Isabel Rio",

"date", "1987-09-05", "salary", 2916.8) ;

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays
• Example: Displaying the structure array

• Notice that the values are usually not displayed in the terminal, only the
composition of the structure array is displayed.

5: Structures; More on File Inpiut / Output 10

>> emps
emps = 1x4 struct array containing the fields:

id name date salary
>> emps(3)
ans = scalar structure containing the fields:

id = 43
name = Carlos Dias
date = 2003-04-12
salary = 2017.6

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays
• Example: Selecting from the structure array

• Note: Beware this last interaction is similar to a loop, but does not yield an array!

5: Structures; More on File Inpiut / Output 11

>> emps(2:3)
ans = 1x2 struct array containing the fields:

id name date salary
>> emps(2).salary
ans = 1724
>> emps.salary
ans = 1654.3
ans = 1742.4
ans = 2017.6
ans = 2916.8

id name date salary	(€)
98 Rui	Silva 2015-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays
• Example: Deleting an element from the array

5: Structures; More on File Inpiut / Output 12

>> emps(3) = []
emps = 1x3 struct array containing the fields:

id name date salary
>> emps(3)
ans = scalar structure containing the fields:

id = 12
name = Isabel Rio
date = 1987-09-05
salary = 2916.8

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays
• Example: Clearing the structure array

5: Structures; More on File Inpiut / Output 13

>> clear emps
>> emps

>> emps(1)
error: invalid use of script

/Users/pedrobarahona/Desktop/octave-mc/emps.m
in index expression

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Stored Structure Arrays
• Typically, the information contained in a structure array is stored in a file, given the

large volume of data it handles.

• Of course, processing this data directly from the file is very inneficient since

• Access to files is sequential.
• Once read say element I, reading element i-1 require to read the file again.

• Access to the file is slow:
• Although disks nowadays are much faster than some years ago, namely

the SSD disks that are fully electronic and have no mechanical
components, its access is typically at least one order of magnitude slower
than that to RAM memory, that have better channels to the CPU.

• Hence, processing data in a table, is done in 3 steps:

1. Reading the table from a file to a structure array

2. Process the data, including adding or deleting elements of the structure array

3. Write the new table into a file

5: Structures; More on File Inpiut / Output 14

20 October 2017

Structure Arrays – Writing to Text Files
• Writing a structure array is straightforward. Typically, every structure is written in a

single line.

• Moreover, since the data is stored as text the fprintf command can be used,
taking into account the type of the data.

• It is important to take care of the characters that are used as delimiters between
the different fields of the structure so that, when the structures are read the bounds
of the different fields are known.

• Typically, a character is chosen that do not appear in the data strings of the
different (text) fields of the structure.

• For example, in CSV files, data is separated by commas, since commas do
not appear in numbers …

• Except if one uses a system like the Portuguese, where commas are used
as decimal separators.

• Good candidates for field separators are the semi-colon (;) or, if the text fields are
more general the horizontal tab(\t), or the vertical bar (|).

5: Structures; More on File Inpiut / Output 15

20 October 2017

Structure Arrays – Writing to Text Files
• We can exemplify this writing with the previous structure array.

• Note the newline char (\n) given in the print template.

5: Structures; More on File Inpiut / Output 16

function print_employees(emps, filename)
% this function prints a structure array with fields ...
% into a text file with the given name

fid = fopen(filename, "w")
for i = 1:length(emps)

fprintf(fid,"%i|%s|%s|%f\n", emps(i).id, emps(i).name,
c = emps(i).date, d = emps(i).salary)

end
fclose(fid);

end

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays – Writing to Text Files

• For the above structure, this function should produce a file with the text: exemplify
this writing with the previous structure array.

5: Structures; More on File Inpiut / Output 17

>> print_employees(emps, “employees.txt”)
>>

98|Rui Silva|2015-10-23|1654.3\n
56|Maria Santos|2008-12-18|1742.4\n
43|Carlos Dias|2003-04-12|2017.6\n
12|sabel Rio|1987-09-05|2916.8\n

employees.txt

id name date salary	(€)
98 Rui	Silva 2011-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays – Reading from Text Files

• There are many different ways/instruction to read text files taking into account its
format (e.g. csv files).

• Here we will exemplify a line based method:

• The file is opened;

• A counter is initialised at 0;

• While there are lines to read

• A line is read

• The counter is updated to take into account a new structure

• The positions of the separator characters are identified

• The fields between identifiers are assigned to the new structure

• Finally, the file is closed

5: Structures; More on File Inpiut / Output 18

20 October 2017

Reading a Structure Array
• The algorithm discussed is now implemented as follows.

5: Structures; More on File Inpiut / Output 19

function emps = read_employees(filename)
% this function reads a structure with fields ...
% from a text file previously opened with channel fid

fid = fopen(filename, "r");
i = 0;
while !feof(fid) % While there are lines to read

i = i + 1; % The counter is updated
line = fgetl(fid); % A line is read
seps = strfind(line, "|"); % The separators are found
emps(i).id = str2num(line(1:seps(1)-1));
emps(i).name = line(seps(1)+1:seps(2)-1);
emps(i).date = line(seps(2)+1:seps(3)-1);
emps(i).salary = str2num(line(seps(3)+1:end-1));

end
fclose(fid);

end

20 October 2017

Reading a Structure Array

5: Structures; More on File Inpiut / Output 20

• The following interaction tests the functioning of this function

>> emps = read_employees(“employees.txt”)
emps = 1x4 struct array containing the fields:

id name date salary
>> emps(3)
ans = scalar structure containing the fields:

id = 43
name = Carlos Dias
date = 2003-04-12
salary = 2017.6

98|Rui Silva|2015-10-23|1654.3\n
56|Maria Santos|2008-12-18|1742.4\n
43|Carlos Dias|2003-04-12|2017.6\n
12|sabel Rio|1987-09-05|2916.8\n

employees.txt

20 October 2017

Structure Arrays – Processing

• Once the structure array is read to memory, we can process it, namely finding
information contained in it.

Three examples:

1. Find the average of the salaries of the employees;

2. Find the oldest employee (according to the dates)

3. Find the name of an employee with a given id

• In the first two cases, the structure array must be completely sweeped, whereas in
the last case, the sweeping can stop once the employee is found.

5: Structures; More on File Inpiut / Output 21

20 October 2017

Structure Arrays – Processing
Example 1: Find the average of the salaries of the employees

function av = average_salary(emps)

• This is very similar to obtain the average of an array,

• The average is obtained by summing all the salaries and dividing it by its number

5: Structures; More on File Inpiut / Output 22

function av = average_salary(emps)
% this function returns the average of the field salary
% from all structures of the array emps

s = 0;
n = length(emps);
for i = 1:n

s = s + emps(i).salary;
end
av = s / n;

end

>> avs = average_salary(emps)
avs = 2082.8

id name date salary	(€)
98 Rui	Silva 2015-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays – Processing
Example 2: Find the oldest employee (according to the dates);

function [id, name] = oldest(emps)

• Again this function is very similar to obtain the minimum of an array

• Once the index of the structure identified, the corresponding name and id are
returned

• Note 1: Finding the minimum of a date in format “yyyy-mm-dd” can be done using
an auxiliary function that compares two dates;

• Note 2: The result of this function is composed of two distinct fields, one is a
number and the other a string.

• To pack the two items in the returned result, they are shown between sqaure
brackets, although the result is not an array!

• In fact to obtain both results they must be declared in the function call.

5: Structures; More on File Inpiut / Output 23

20 October 2017

Structure Arrays – Processing
Example 2: Find the oldest employee (according to the dates);

5: Structures; More on File Inpiut / Output 24

function [id, name] = oldest_emp(emps)
% this function returns the id and name of the oldest employee
% from all structures of the array emps
% the structures have fields date, id and name

oldest_date = "3000-01-01";
n = length(emps);
for i = 1:n

if before(emps(i).date, oldest_date)
oldest_date = emps(i).date;
oldest_idx = i;

end
end
id = emps(oldest_idx).id;
name = emps(oldest_idx).name;

end

20 October 2017

Structure Arrays – Processing
Example 2a: Compare two dates in format yyyy-mm-dd
• The dates are compared by year, month and day, after turning these into numbers.

5: Structures; More on File Inpiut / Output 25

function bool = before(date1, date2)
% returns true if date1 is before date2, false otherwise
% both dates are in the format yyyy-mm-dd

bool = false;
y1 = str2num(date1(1:4)); y2 = str2num(date2(1:4));
if y1 < y2

bool = true; return;
else y1 == y2

m1 = str2num(date1(6:7)); m2 = str2num(date2(6:7));
if m1 < m2

bool = true; return;
else m1 == m2

d1 = str2num(date1(9:12)); d2 = str2num(date2(9:12))
if d1 < d2

bool = true;
end

end
end

end

20 October 2017

Structure Arrays – Processing
Example 2a: The auxiliary function should be tested before used (unitary tests)

• Note: In general, all possible conditional paths in a function should be tested

5: Structures; More on File Inpiut / Output 26

>> before(“2001-12-04”, “2001-12-04”)
ans = 0
>> before(“2001-12-04”, “2001-12-05”)
ans = 1
>> before(“2001-12-04”, “2002-12-04”)
ans = 1
>> before(“2000-11-04”, “2002-01-04”)
ans = 1
>> before(“2001-12-04”, “2001-01-03”)
ans = 0
>> before(“2001-12-04”, “2001-11-04”)
ans = 0
>> before(“2001-12-04”, “2000-12-04”)
ans = 0

20 October 2017

Structure Arrays – Processing
Example 2: The main function should also be tested

• Note the way in which the results are obtained (or ommited)

5: Structures; More on File Inpiut / Output 27

>> oldest_emp(emps)
ans = 12
>> ii = oldest_emp(emps)
ii = 12
>> [ii,nn] = oldest_emp(emps)
ii = 12
nn = Isabel Rio
>>

id name date salary	(€)
98 Rui	Silva 2015-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

20 October 2017

Structure Arrays – Processing
Example 3: Find the name of an employee with a given id

function [found, name] = emp_name(id, emps)

• This is very similar to finding an element in an array, but with a few differences

• Once the element is found, its index is used to obtain the name;

• Again, the expected result is a tuple, composed of two elements:

• The first is a Boolean indicating whether the employee exist

• The second is a string with the name of the employee (or empty)

5: Structures; More on File Inpiut / Output 28

20 October 2017

Structure Arrays – Processing
Example 3: Find the name of an employee with a given id

5: Structures; More on File Inpiut / Output 29

function [found, name] = emp_name(id, emps)
% Given structure array emps with fields id and name
% this function returns the name of the structure
% with the given id, if any

i = 0;
n = length(emps);
found = false;
name = "";
while i < n && !found

i = i+1;
if emps(i).id == id

found = true;
name = emps(i).name;
return;

end
end

end

20 October 2017

Structure Arrays – Processing
Example 3: This function should also be tested

5: Structures; More on File Inpiut / Output 30

>> emp_name(100, emps)
ans = 0
>> [bb,nn] = emp_name(100, emps)
bb = 0
bb =
>> [bb,nn] = emp_name(98, emps)
bb = 1
nn = Rui Silva
>> [bb,nn] = emp_name(12, emps)
bb = 1
nn = Isabel Rio
>>

id name date salary	(€)
98 Rui	Silva 2015-10-23 1654.3
56 Maria	Santos 2008-12-18 1742.4
43 	Carlos	Dias 2003-04-12 2017.6
12 Isabel	Rio 1987-09-05 2916.8

