
Strings; Text Files

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2017/2018

13 October 2017 4: Strings; Text Files 1

13 October 2017

Text Processing
• Much useful information is not numeric and takes the form of text (e.g. names,

documents, ...). Hence the need to represent text and to subsequently process it.

• All programming languages support text data types, namely

• Characters; and

• Strings (sequences of characters).

• Basic 128 characters, include letters, digits, punctuation and control characters,
and are usually represented by their ASCII (American Standard Code for
Information Interchange) codes.

• Notice that 128 different characters require 7 bits to be represented (128 = 27).

• With an 8th bit (initially meant for parity checking), the extended ASCII code allows
the representation of 128 more characters used in several languages (other than
English).

4: Strings; Text Files 2

13 October 2017

Text Processing
• The characters represented in 7bit ASCII code are:

• Letters (52), uppercase (26) e lowercase (26)

• Digits (10)

• Space and other punctuation “visible” characters (34)

• ‘ “ () [] { } , . : ; = < > + - * \ | / ^ ~ ´ ` # $ % & _ ! ? @

• Control (invisible) characters (32)

• horizontal tab (\t), new line (\n), alert (\a), ...

• With an 8th bit, other 128 characters can be represented, such as

• ç, ã, ñ, š , ø , ∞, ¬ j, Σ, ш, ,ך ,אל غغ

• The representation of other alphabets (Chinese, Arab, Indian, ...) require 16 bits (a
total of 216 = 65536 characters) and is supported in Unicode (widely adopted in
the Internet).

• Unicode subsumes the ASCII code (the initial 256 characters are the same).

4: Strings; Text Files 3

13 October 2017

Strings

• Strings are sequences of characters, and text can be regarded as a “big” string.

• To assign a variable with a string, the text must be delimited by quotation marks (“)
or apostrophs (‘). For example,

• x = “this is a string”

• Having two delimiters is quite handy, when the text includes one of them, as in
• name = “Rui d’Almeida” ; or
• sent = ‘He said “Enough” and left.’

… although escape sequences can be used
• nome = ‘Rui d’’Almeida’ ; or
• Sent = “He said\“Enough\” and left.”

… and these are sometimes unescapable
• complete_name = “Rui d’Almeida said \“Enough\” and left.”
• complete_sent = ‘Rui d’’Almeida said “Enough” and left.’

• Note: In MATLAB special characters (e.g. ç, ã) should be avoided in strings, as the
support is limited and cumbersome (e.g. ç is represented by \303.)

4: Strings; Text Files 4

13 October 2017

Escape Sequences

• The following escape sequences are useful for referring special non visible
characters, namely control characters.

• There are some differences in the handling of the delimiters and escape
characters, and the “” delimiter should be preferred. The following escape
sequences are accepted in MATLAB (wih “ delimiters).

\\ back slash” (\)
\” quotation (”)
\’ apostrophe (‘)
\0 nil (control-@ (code 0)
\a alert (control-g with code 7)
\b back (control-h with code 8)
\f new page (control-l with code 12).
\n new line (control-j with code 10).
\r return (control-m with code 13).
\t horizontal tab (control-i with code 9).
\v vertical tab (control-k with code 11).

4: Strings; Text Files 5

13 October 2017

String Operations

• Strings are encoded as uni-dimensional arrays (vectors) of characters, so the usual
operations on vectors can be used to compose and decompose strings.

Concatenation

• Strings can be concatenated either with array operations or with the predefined
functions strcat and cstrcat (the first function trims the leading and trailing spaces)

>> name = "rui”
name = rui
>> surname = "santos”
surname = santos
>> fullname1 = [name, " ", surname]
fullname = rui santos
>> fullname2 = strcat(name, " ", surname)
fullname = ruisantos
>> fullname3 = cstrcat(name, " ", surname)
fullname = rui santos

4: Strings; Text Files 6

13 October 2017

String Operations
Projection (Extraction) of Substrings

• Projection of strings to some of their substrings (or characters) can be obtained
through the usual vector operations,

or through the substr predefined function.

>> text = ”This is a string.”
text = This is a string.
>> pre = text(1:6). % all chars between the 1st and 6th

pre = This i
>> pos = text(9:end) % all chars between the 9th and last
pos = a string.

>> text = ”This is a string.”
>> fix = substr(text,6,7) % 7 chars starting at the 6th

fix = is a st

4: Strings; Text Files 7

13 October 2017

String Operations

Substring Search

• If one is interested in finding the position(s) of a substring within a string, the findstr
function can be used.

>> text = ”This is a string.”
text = This is a string.
>> findstr(“string”, text)
ans = 11
>> findstr(“i”, text)
ans = 3 6 14
>> findstr(“z”, text)
ans = [](0x0)

4: Strings; Text Files 8

13 October 2017

String Operations

Comparing Strings

• The previous example involves the comparison of (sub)strings. Strings can of
course be compared by comparing each of their characters (accessed with
projections).

• Given its relevance, the predefined Boolean function strcmp compares two strings

>> text1 = ”text 1”
text1 = text 1
>> text2 = ”text 2”
text2 = text 2
>> strcmp(text1,text2)
ans = 0
>> strcmp(text1, ”text 1”)
ans = 1

4: Strings; Text Files 9

13 October 2017

String Operations

Comparing Strings Lexicographically

• Sometimes one is interested in checking whether a
string precedes (in lexicographic order) another
string.

• There is no predefined function for this Boolean
function, but one can define it, by comparing the
characters of the strings.

• Characters can be compared lexicographically, by
simply using the usual relational operators. In fact
this comparison is made on the codes of the
characters that define their order.

• Note that codes can be obtained by

• function toascii; or

• multiplying the char by 1! – why?

>> “a” < “b”
ans = 1
>> “f” < “c”
ans = 0
>> “1” < “3”
ans = 1
>> “9” < “A”
ans = 1
>> “Z” < “a”
ans = 1
>> toascii(“e”)
ans = 101
>> “f”*1
ans = 102

4: Strings; Text Files 10

13 October 2017

String Operations

Comparing Strings Lexicographically

• Now the strings can be compared with function strbef defined as defined below.

• The characters are compared one by one until a difference is spotted (and the
function immediately ends – return statement). Otherwise, the shorter string is the
before the longer (e.g. “maria” is lexicographically before “mariana”).

function before = strbef(st1, st2)
% this function checks whether st1 is before st2

i = 1; % start comparison in char 1
while length(st1) >= i && length(st2) >= i

if st1(i) == st2(i)
i = i + 1;

else
before = (st1(i) < st2(i));
return;

end
end
before = (length(st1) < length(st2));

end
4: Strings; Text Files 11

13 October 2017

String Operations

Comparing Strings Lexicographically

• Since comparisons are made between the codes of the characters it is often
important to guarantee that characters have the same case, so as to avoid that
“Mariana” is considered before “maria”.

• The string operations toupper/1 and tolower/1 allow the conversion of all letters to
the same case (upper and lower respectively) so that they can be properly
compared.

>> strbef("Mariana", "maria")
ans = 1
>> strbef(toupper("Mariana"), toupper("maria"))
ans = 0
>> tolower("Mariana”)
ans = mariana

4: Strings; Text Files 12

13 October 2017

String Operations

Comparing Strings Lexicographically

• When comparing strings it is often necessary to remove leading and trailing spaces,
since they are not usually significant. This can be done with functions

• strtrim – removes removes both leading and trailing spaces

• deblank – only removes the trailing spaces

• In longer strings, not adequately formatted, it is also convenient to convert newlines
into spaces and remove duplicate spaces. This is left as an exercise.

>> text = “ Spaces: 2 leading, 4 trailing “;
>> length(text)
ans = 35
>> length(strtrim(text))
ans = 29
>> length(deblank(text))
ans = 31

4: Strings; Text Files 13

13 October 2017

String Operations

Strings and Numbers

• Another commonly used conversion is between text that represents numerical
information, and the numbers it represents.

• A string simply encodes the digits of a number, not the number itself, and this has to
be taken into account for handling this information.

• Two functions, str2num and num2str allow the conversion between these two
representations

>> st1 = “15”;
>> st2 = “426”;
>> st3 = “158”;
>> st1 + st2
error: mx_el_lt: nonconformant arguments (op1 is 1x3, op2 is 1x2)
>> st2 + st3
ans = 101 106 110
>> st2 * 1
ans = 52 53 54

4: Strings; Text Files 14

13 October 2017

String Operations

Strings and Numbers

• To obtain the expected results, conversion to the appropriate data types is needed.

>> st1 = “15”;
>> st2 = “426”;
>> st3 = “158”
>> x = str2num(st1) + str2num(st2)
x = 441
>> y = str2num(st2) + str2num(st3)
y = 584
>> v1 = [x,y]
v1 = 441 584
>> v2 = [num2str(x),num2str(y)]
v2 = 441584
>> = 1*v2
ans = 52 52 49 53 56 52
>> = 1*str2num(v2)
ans = 441584

4: Strings; Text Files 15

13 October 2017

String Operations

4: Strings; Text Files 16

Information Boolean Functions about Types

• In addition to the conversion functions a
number of information Boolean functions is
available in MATLAB to obtain the type of the
character (or string) being used
• isalpha(s) 1 if s is alphabetic (a letter)

• upper or lower case
• islower(s) 1 if s is lower case letter
• isupper(s) 1 if s is upper case letter
• isdigit(s) 1 if s is a digit
• isalnum(s) 1 if s is alphanumeric

• a digit or alphabetic
• isspace(s) 1 if s is space
• ispunct(s) 1 if s is a punctuation char
• iscntrl(s) 1 if s is a control character

>> st = “47 is Prime.”;

>> d = isdigit(st)

d = 1 1 0 0 0 0 0 0 0 0 0 0

>> l = islower(st)

l = 0 0 0 1 1 0 0 1 1 1 1 0

>> u = isupper(st)

u = 0 0 0 0 0 0 1 0 0 0 0 0

>> s = isspace(st)

s = 0 0 1 0 0 1 0 0 0 0 0 0

>> p = ispunct(st)

p = 0 0 0 0 0 0 0 0 0 0 0 1

13 October 2017

File Input / Output

4: Strings; Text Files 17

• When the amount of data is large, it is not practical/feasible to enter data and read
program results from the terminal. In most cases, we use files to have permanent
access to this data (here we will only consider text files – that can be read by any text
processor, such as notepad).

• Files are managed by a file system (part of the operation system – Windows, Linux,
MacOS) and files are organised in a (inverted) tree.

• At the top there is a root directory that recursively contains other directories (the
branches of the tree) and possibly files (the leafs of the tree).

• The OCTAVE IDE supports some typical file system instructions, that can be used
either in a program or at the terminal. Among the most useful
• pwd – returns a string representing the current directory
• dir – returns a string denoting directories and files of the current directory
• cd name – changes the current directory to the directory with name
• cd .. – changes the current directory to its parent directory
• cd // – makes the root as the current directory

13 October 2017

File Input / Output

4: Strings; Text Files 18

• To read to or write from a file, it is necessary a) to open it, and after handling its data
(reading from / writing into), the file should be closed.

• In MATLAB, opening a file is done with instruction
• fopen(fileName, mode)
where
• fileName is the name of the file (as seen from the current directory)
• mode is either “r” for read or “w” for write

• The function returns a positive integer (the channel number) that should be
subsequently used to read/write data and finally to close the file.
• Note: If the file could not be opened, the function returns -1.

• Once used, the file should be closed with instruction
• fclose(fid)
where
• fid is the channel number that was obtained when the file was opened.
• Note: This function returns 0 if the file was properly closed or -1 otherwise.

13 October 2017

File Output

4: Strings; Text Files 19

• The access to an open file is sequential, i.e. data items are read/written one after the
other with no going back or direct access to some kth item of the file.

• To write (text) data in a file, the following MATLAB instruction may be used
• fprintf(fid, template, par1, par2, …, parn)
where
• fid is the channel number that was obtained when the file was opened.
• template is the string that is written, where parameters pari replace the “place

holders” (in the sequence they are specified), which can take the following types
• %[n]i an integer parameter , with optional n characters (leading spaces)
• %[m.n]f a real number with optional m characters, n after the decimal dot.
• %[n]s a string with (optional) n characters (padded with leading spaces)

>> s1 = “integer”;
>> s2 = “decimal”
>> printf(“An%10s:%4i and %s %8.3.”, s1, 17, s2, 4.12)
“An integer: 17 and decimal 4.12.”

13 October 2017

File Output

4: Strings; Text Files 20

Some Notes:

1. The following variants of the fprintf instruction can be used with the exact same
formatting rules, but omitting the file id to
• printf(template, parameters)

• writes the string to the terminal
• sprintf(template, parameters)

• returns the string (e.g. the string can be assigned to a variable)

2. Since the place holders of the parameters are specified with a % sign, if the string to be
written includes a “%”, then it is specified by the escape sequence “%%”.

3. Tabs and newlines (change of line) can be specified in the template by means of the
escape sequences
• \t for a tab

• \n for a newline

13 October 2017

File Input

4: Strings; Text Files 21

• The most general form to read text from a (text) file is to read each and every character
from the file, which can be done with instruction
• fscanf(fid, %c, “C”)

• Returns the next character from the file being read.

• The format of what is being read can change. Rather than a single character, one might
be interested in reading one word at a time, and this can be done changing the reading
template to
• fscanf(fid, %s, “C”)

• Returns the next word from the file being read.
• Notice that words are delimited by spaces and new lines, but punctuation

characters are considered in the words.

• Finally, the next command allows reading a file, line by line
• fgetl(fid)

• Returns a string with the line with the current position of the cursor, i.e. all the
characters that start in the cursor and up to the next newline.

• It returns -1 if attempting to read beyond the end of the file.

13 October 2017

File Input

4: Strings; Text Files 22

• Of course, when reading a file one might not know its length, so the end of file should be
tested before attempting to read anything. This can be done with function
• feof(fid)

• A Boolean function that returns whether the end of the file has been reached.

• Of course, every line must be “parsed” to extract its content that may consist of several
data items.

• Typically, when data items are separated by some character (e.g. space or comma) the
parsing might be done by finding the positions of the separators (with findstr) and then
extracting the data between the separators.

• In other cases, specially when the lines / files contain numerical information, the function
str2num/1 makes a direct conversion of arrays and matrices.

13 October 2017

File Input / Output

4: Strings; Text Files 23

• To read text from the following function can be defined

• Note: Beware that strings with new lines are not shown adequately in the Octave
console.

function txt = read_text_file(filename)
fid = fopen(filename, "r");
txt = "";
while ! feof(fid)

ch = fscanf(fid, "%c", "C");
if ischar(ch)

txt = cstrcat(txt,ch);
end

end
fclose(fid);

end

13 October 2017

File Input / Output

4: Strings; Text Files 24

• With the function above an array or matrix can be read “indirectly” as shown below.

• Assume the following text file in your working directory

• Then the following interaction illustrates the reading of the matrix

12 20 30 89
34 50 98 13
25 47 26 56

Matrix.txt

>> str = read_text_file(“matrix.txt”);
>> mat = str2num(str)
mat = 12 20 30 89

34 50 98 13
25 47 26 56

>>

