
More on Functions; WHILE instructions

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2017/2018

6 October 2017 3: More on Functions; WHILE instruction 1

6 October 2017 3: More on Functions; WHILE instruction 2

Iterative Execution - WHILE
• In many cases, although a block of instructions is to be repeated, it is not known

before hand how many times it should be iterated.

• For example, to find an element in an array or matrix (or a word in a sequence of
text), one might not have to look at all the elements of the array/matrix/text, since the
element may be found before. In this case, the use of a FOR instruction (although
possible) might not be desirable.

• In these cases, the WHILE instruction should be used , as illustrated in the next
example: the Euclid's algorithm to find the maximum common divider between two
integers.

• The WHILE instruction has the following syntax in MATLAB

while <CONDITION>
WHILE-BLOCK

end;

6 October 2017 3: More on Functions; WHILE instruction 3

Iterative Execution - WHILE

• The behaviour of this instruction is quite intuitive. When the program reaches this
instruction

1. The CONDITION is assessed

2. If the condition is not satisfied the WHILE-BLOCK is not executed and the
program “jumps” to the next instruction.

3. Otherwise, the WHILE-BLOCK is executed.

4. After executing the block, the program goes back to step 1 (to assess the
CONDITON again, …).

• NOTE: Care has to be taken in the specification of the condition and the WHILE-
BLOCK. In particular, if this block does not change the variables involved in the
CONDITION, so as to make it eventually false, the program loops forever!

while <CONDITION>
WHILE-BLOCK

end;

6 October 2017 3: More on Functions; WHILE instruction 4

Euclid’s Algorithm
• The Maximum Common Divider (MCD) of two integers, can be obtained by the

following algorithm.

1. Take the two numbers, and make them A and B, ensuring that A is no less than B.

2. While A is greater than B

• Obtain C, the difference between A and B (i.e. C = A – B);

• Rename the numbers B and C, such that A becomes the larger of them and B
the smallest.

• Check again the condition and iterate as many times as needed.

• When one gets A equal to B, the iterations stop.

• The MCD of the initial numbers is A.

6 October 2017 3: More on Functions; WHILE instruction 5

Euclid’s Algorithm
Example:

• Let the numbers be 270 and 72, and see the evolution of the values of a, b and c.

• Hence 18 is the MCD between 270 and 72.

a
270
198
126
72
54
36
18

b
72
72
72
54
18
18
18

c = a-b
198
126
54
18
36
18
0

6 October 2017 3: More on Functions; WHILE instruction 6

Euclid’s Algorithm - WHILE
• The Euclid’s Algorithm can be implemented with the following function:

function m = euclid(p, q)
% m = euclid(p, q)
% this function computes m, the maximum
% common divider between p and q.

a = max(p,q);
b = min(p,q);
while a > b

c = b – a;
if c < b

a = b;
b = c;

else
a = c; % and b remains b

end
end % at this point a = b
m = b;

end

% the order between these two
% assignments cannot change!

6 October 2017 3: More on Functions; WHILE instruction 7

Euclid’s Algorithm - WHILE
• A trace of the function execution shows how the values of f2, f1 and f are maintained

>> d = euclid(270, 72)
a = 270
b = 72 % before first iteration
a = 198
b = 72 % after first iteration
a = 126
b = 72 % after second iteration
a = 72
b = 54 % after third iteration
a = 54
b = 18 % after fourth iteration
a = 36
b = 18 % after fifth iteration
a = 18
b = 18 % after sixt iteration
d = 18

while a > b
c = a – b;
if c < b

a = b;
b = c;

else
a = c;
b = b;

end
end

6 October 2017 3: More on Functions; WHILE instruction 8

Iterative Execution - WHILE
• We can go back to the problem referred above of finding a value in an array.

• In particular we are interested in specifying a function find/2 that takes

• A number as first argument; and

• An array as second argument;

and returns

• The index of the first position where that element appears.

• Note: If there is no such element the function should return 0.

• Some examples:

• find(3, [5, 8, 4, 3, 6, 8, 2]) à 4

• find(8, [5, 8, 4, 3, 6, 8, 2]) à 2

• find(9, [5, 8, 4, 3, 6, 8, 2]) à 0

6 October 2017 3: More on Functions; WHILE instruction 9

Iterative Execution - WHILE
• Before implementing the function we may design a convenient algorithm to solve this

problem. Informally

• While you have not found it and there is a next element

• Look at the next element of the array to see if it is the intended one

• Report the index of the element where you found it

• Although the skeleton of the algorithm is there, a few points must be taken care

1. Where do we start from

2. What if the element is not in the array

• Firstly, we must guarantee that we look at the first element, … if there is one!

• Secondly, if there are no more elements to look at, the algorithm must return 0.

• These issues may be dealt with in the specification of the find/2 function

6 October 2017 3: More on Functions; WHILE instruction 10

Iterative Execution - WHILE
• The algorithm can now be implemented as function find/2, shown below

function k = find(v, V)
% k = find(v, V)
% this function returns k, the first position, where
% v is in array V. It returns 0 if v is not present.

found = false;
k = 0;
i = 1;
n = length(V);
while i <= n && !found % while not found and

if v == V(i) % there is a next element to check
k = i;
found = true;

else
i = i + 1 ;

end
end

end

6 October 2017 3: More on Functions; WHILE instruction 11

WHILE vs. FOR
• Sometimes, namely when it is known the maximum number of times a cycle might be

repeated, an instruction FOR might be used to force this (max9 number of cycles

• In this case, when the condition to stop the cycle becomes True, then the cycle
should be interrupted.

• In the context of a function, this may be achieved with instruction return, as below

function k = find_2(v, V)
% k = find(v, V)
% this function returns k, the first position, where
% v is in array V. It returns 0 if v is not present.

k = 0; % initially, the element is yet to find
for i = 1:length(V)

if v == V(i) % if the element is found in position i
k = i; % assign the value of the function to i
return; % and return (finish the function)

end
end

end

6 October 2017 3: More on Functions; WHILE instruction 12

Iterative Execution - WHILE
• A last note on the condition that could have been used in the WHILE

• As we know, trying to read an element of an array past its size reports an error

• Hence it is important that testing the value of the element is only done after the index
is checked to be within the bound.

• In MATLAB the Boolean expression A && B (resp. A || B) is executed as follows

1. Firstly, the Boolean expression A is assessed;

2. If A is False (resp. True) the condition is False (resp. True)

3. Otherwise B is assessed.

4. The value of the condition is the value of B

while i <= length(V) && V(i) != v

>> A = [4 7 5];
>> A(4)

error: A(I): index out of bounds; value 4 out of bound 3

6 October 2017 3: More on Functions; WHILE instruction 13

Nested Functions
• As functions become more complex, their design relies on other functions, either

system defined functions or user functions previously defined.

• For example if the sin/1 function has been defined then the tang/1 function can be
defined in the obvious way.

• Hence functions can call other functions. Assuming the called functions terminate,
the calling functions will also terminate.

• However, what happens when a function calls itself?

function t = tang(x)
% t = tang(x)
% this function returns t, the tangent of the angle x

s = sin(x);
c = sqrt(1-s^2)
t = s/c;

end

6 October 2017 3: More on Functions; WHILE instruction 14

Recursive Functions: Factorial
• When functions call themselves, i.e. they are defined recursively, one must be careful

so that they do terminate.

• Take for example the case of the function fact/1 defined recursively to obtain the
factorial of a non-negative integer (i.e the factorial/1 function, that is already pre-
defined in MATLAB).

• This functionality could of course be defined iteratively, by means of the
accumulation technique that we have seen in the previous class, implemented with
a for loop.

function f = fact_1(n)
% f = fact_1(n)
% this function returns f, the factorial of number n

p = 1;
for i = 1:n;

p = p * i;
end;
f = p;

end

6 October 2017 3: More on Functions; WHILE instruction 15

Recursive Functions: Factorial
• A more “mathematical” definition could however be used to guide the function

implementation:

• Notice that in the implementation of this recursive function, the termination condition
must be tested before the recursive call is made.

• Otherwise the program loops forever!

function f = fact (n)
% f = fact (n)
% this function returns f, the factorial of number n

if n <= 1;
f = n;

else
f = n * fact(n-1);

end
end

1 if n <= 1

n * (n-1)! if n > 1
n! =

6 October 2017 3: More on Functions; WHILE instruction 16

Recursive Functions: Factorial
• A more “mathematical” definition could however be used to guide the function

implementation:

• Important: In the implementation of a recursive function, the termination condition is
tested before the recursive call is made. Otherwise the program loops forever!

• Note: MATLAB has a predefined variable, max_recursion_depth, with a (default)
value of 256, stops recursion if the depth is exceeded, thus preventing endless loops.

function f = fact (n)
% f = fact (n)
% this function returns f, the factorial of number n

if n <= 1;
f = n;

else
f = n * fact(n-1);

end
end

1 if n <= 1

n * (n-1)! if n > 1
n! =

6 October 2017 3: More on Functions; WHILE instruction 17

Recursive Functions: Maximum Common Divider
• The same recursive technique may be used to define the MCD of two numbers,

taking into account that :

• Note again that in this recursive function, the termination condition is tested before
the recursive call is made

function d = mdc(m, n)
% d = mdc (m,n)
% this function returns d, the maximum common divider
% of integers m and n

if m == n
d = m;

else
p = min(m , n);
q = abs(m - n);
d = mdc(p , q);

end
end

m if m = n

mdc(min(m,n), abs(m-n) if m ≠ n
mdc(m,n) =

6 October 2017 3: More on Functions; WHILE instruction 18

Doubly Recursive Functions: Fibonacci Numbers
• A final example of a function that is defined recursively returns the nth Fibonacci

element of the series

1, 1, 2, 3, 5, 8,13, 21, 34, 55 …

• Note that in this series, every element is the sum of the two previous elements.

• Hence the function can be defined recursively as

• There is a (significant) difference in this case, which is the fact that the function is
recursively called twice, as we will analyse later.

• But from a modelling point of view, the recursively defined function can be
implemented as before.

1 if n <= 2

fib(m-1)+ fib(m-2) if n > 2
fib(n) =

6 October 2017 3: More on Functions; WHILE instruction 19

Doubly Recursive Functions: Fibonacci Numbers

• Although the termination condition is tested before the recursive calls are made, now
there are two recursive calls and this has a big impact on the execution

• In particular, many instances of function fib, with the same input arguments, are
called several times, in fact an exponential number of times!

function f = fib(n)
% f = fib(n)
% this function returns f, the nth fibonnaci number

if n <= 2
f = 1;

else
f = fib(n-1) + fib(n-2);

end
end

1 if n <= 2

fib(m-1)+ fib(m-2) if n > 2
fib(n) =

6 October 2017 3: More on Functions; WHILE instruction 20

Doubly Recursive Functions: Fibonacci Numbers
• In fact, we can trace the computation, and see that the following calls are made

1 if n <= 2

fib(m-1)+ fib(m-2) if n > 2
fib(n) =

7

2 1

4

23

2 1

3

6

23

2 12 1

4

23

2 1

3

5 4

5

• fib(7) is called 1 time
• fib(6) is called 1 times
• fib(5) is called 2 times
• fib(4) is called 3 times
• fib(3) is called 5 times

• In general,
• fib(3) is called fib(n-2) times
• fib(4) is called fib(n-3) times, …

• and fib(n) grows exponentially!
1, 1, 2, 3, 5, 8,13, 21, 34, 55, 89, 144, 233,
377, 610, 987, 1597, 2584, 4181, 6765, 10946, …

6 October 2017 3: More on Functions; WHILE instruction 21

Double Recursive Functions: Fibonacci Numbers
• There are two ways of avoiding this exponential explosion with double recursive

functions
1. use the iterative version for modelling the function
2. memorize the values of the previous calls

• The iterative version, shown below, maintaining the previous 2 fibonacci numbers in
two variables f2 and f1 that are added to obtain the current finonacci number.

• Note that the iterations only take place for n >= 3.

function f = fib_ite(n)
% f = fib(n)
% this function returns f, the nth fibonnaci number
% using an iterative modelling

f = 1; f2 = 1; f1 = 1;
for i = 3:n

f = f2 + f1;
f2 = f1;
f1 = f;

end
end

6 October 2017 3: More on Functions; WHILE instruction 22

Double Recursive Functions: Fibonacci Numbers
• A trace of the function execution shows how the values of f2, f1 and f are maintained

>> n = fib_ite(7)
f = 1
f2 = 1
f1 = 1 % before first iteration
f = 2
f2 = 1
f1 = 2 % after iteration i = 3
f = 3
f2 = 2
f1 = 3 % after iteration i = 4
f = 5
f2 = 3
f1 = 5 % after iteration i = 5
f = 8
f2 = 5
f1 = 8 % after iteration i = 6
f = 13
f2 = 8
f1 = 13 % after iteration i = 7
n = 13

f = 1;
f2 = 1;
f1 = 1;
for i = 3:n

f = f2 + f1;
f2 = f1;
f1 = f;

end

6 October 2017 3: More on Functions; WHILE instruction 23

Double Recursive Functions: Fibonacci Numbers
• The recursive version with memorization maintains a vector as a global variable, i.e.

a variable that is defined in the global context, and is thus visible from inside any
function.

• Let us call this vector variable fib_vec, and define it in the outer context (initializing
the first two numbers in the fibonacci sequence to 1)

• Now, any function can read from and write into this function if it identifies the variable
as global, inside the function body.

• This is done through a global declaration, inside the function body

>> global fib_vec = zeros(1,7)
>> fb_vec(1:2) = 1
fib_vec = 1 1 0 0 0 0 0

function ...
global fib_vec;

end

6 October 2017 3: More on Functions; WHILE instruction 24

Double Recursive Functions: Fibonacci Numbers
• Now the recursive version with memorisation is easily explained.

If the value has not been computed yet (i.e. n > 2 && fib_vec(n) ≠ 0) then
it is is computed by the (double) recursive call, and
written in fib_vec

now the value in fib_vec, can be returned

function f = fib_mem(n);
global fib_vec; % fib_vec identified as global
if n > 2 && fib_vec(n) == 0 % value has yet computed

fib_vec(n) = fib_mem(n-1)+fib_mem(n-2);
end
f = fib_vec(n) = f;

end;

6 October 2017 3: More on Functions; WHILE instruction 25

Global Variables
• A last note on global variables, which have a state and the following life cycle.

1. Variables are created, in the outer context, with the declaration global.

2. Then they are assessed, either in the outer context, or within some function body.
a. In this case, they must be identified as global (not to be created again, only to be

identified)

3. Eventually, they are destroyed, either because the outer context is finished, or the
user wants to reset them.
a. In the latter case, the instruction clear must be used.

Note: Some predefined variables (pi, e) are predefined global variables. If they are
redefined by some assignment, they may be cleared to return to their predefined values.

>> global vec = [1 2 3];
>> vec
vec = 1 2 3

>> clear vec
>> vec
error: Invalid call to vec. Correct usage is:
...

