
Test #1 – 5 January 2018 Computational Methods - 1 / 7 -

Mestrado em Matemática e Aplicações
Especialização em Matemática Financeira

2017/2018, 1º semester

Computational Methods
Test #1 – 5 January 2018

Duration: 2 hours
Close Book (no consulting materials are allowed)

 Student nº ______ Name: __

1. (1 pt) What is the value of variable p at the end of the following program

i = +1;
p = -1;
while i < 5
 p = -p * i;
 i = i + 1;
end

2. (1 pt) What integer value should k take so that, at the end of the program below, variable s
takes value 14.

M = [1 3 5; 2 4 k]
s = 0;
for i = 1:2
 for j = 1:2:3
 s = s + M(i,j);
 end
end

3. (1 pt) Given two vectors, A and B, with the same number of elements, assign an expression to
variable c that computes the number of elements of A that are greater than the corresponding
elements of B. For example, for A = [4,9,-3,1,8] and B = [5,2,9,-2,3] the
expression should assign 3 to c, since the second, fourth and fifth elements of A are greater
than those of B (i.e. 9>2, 1 > -2 and 8 > 3).

4. (1 pt) After running the sequence of instructions below, what is the value of the variable s?

 A = [1 3 2 4];
B = [6 8 9 3];
s = A(1)*B(1)
for i = 2:length(A)
 s = s + A(i)*B(i);
end
s = s / length(B);

 Answer: s = 15

Answer: c = -24

Answer: c = sum(A > B) 0

Answer: k = 6

Test #1 – 5 January 2018 Computational Methods - 2 / 7 -

5. (1.5 pt) Given the text file “test.txt” containing the text below

This	is	a	file	with	3	lines	
This	is	the	second	of	these	lines.	
And	this	is	the	last	line.	

what is the value returned by the call p = line_ch(2,”s”)?

6. (1.5 pt) What is the approximate value that you expect from the execution of the function
below when the call test(1000)is made.

7. (2 pt) What is the final value of matrix M computed by the program below?

function c = line_ch(n, ch);
 fid = fopen(“test.txt”, “r”)
 for i = 1:n
 s = fgetl(fid);
 end
 for i = 1:length(s)
 if s(i) == ch
 c = c + 1;
 end
 end
 fclose(fid);
end

 Answer: p = 4

function t = test(n);
 t = 0;
 for i = 1:n
 if rand() <= 0.8 && rand() <= 0.4
 t = t + 1;
 end;
 end
end

 Answer: 320

m = 4;
n = 4;
M = zeros(m,n);
for i = 1:m
 for j = 1:n
 M(i,j) = (i-1)*(j-1);
 end
end

 Answer: M = [0 0 0 0 ;
0 1 2 3 ;

 0 2 4 6 ;
 0 3 6 9]

Test #1 – 5 January 2018 Computational Methods - 3 / 7 -

8. (2 pt) Complete the specification of the function below so that it returns the minimum
difference (in absolute value) between any two elements of vector V. For example, the call

x = min_diff([26 19 50 48 10])

should assign x = 2 (since abs(M(4)–M(5) == 2).

function m = min_diff(V);

end

9. (2 pt) Complete the specification of the function below so that it returns the index, r, of the
row of a matrix M with largest sum, as well as the sum, s, itself. For example, the call of the
function [r,s] = greatest_row([1 6 5;4 8 7;3 7 2]) should return values
r=2 and s=19, since the sum of row 2 (4+8+7=19) is the largest of the rows of M.

function [r,s] = greatest_row(M);

 end

 m = inf;
 for i = 1:length(V)-1
 for j = i+1:length(V)
 d = abs(V(i) – V(j));
 if d < m
 m = d;
 end
 end
 end

s = 0;
for i = 1:size(M,1);
 x = 0;
 for j = 1:size(M,2);
 x = x + M(i,j);
 end
 if x > s
 r = i;
 s = x;
 end
end

Test #1 – 5 January 2018 Computational Methods - 4 / 7 -

10. (2 pt) As you will recognise, the function below implements the recursive version of the
bipartite search for a value x in a sorted vector S, between indices lo and up. As you
know, this algorithm has worst case complexity of O(ln n), since in the worst case the
algorithm requires log2(n) recursive calls of function find_between/4, but the exact
number of calls depends on the actual vector S and the value x.

Adapt the function below, so that it not only returns p, the position of the value x, but also the
number n of recursive calls to function find_between/4.

function [p,n] = find_between (x,S,lo,up);
% returns the index p of a vector S, sorted in
% increasing order, if x is to be found between
% indices lo and up. Otherwise, it returns p = 0
% it counts the number n of recursive calls

 n = 0;
 p = 0;

 if lo <= up

 m = round((lo+up))/2;

 if S(m) == x

 p = m;

 return;

 elseif x < S(m)

 [p,n1] = find_between(x,S,lo, m-1) + 1;
 n = n1 + 1;
 else

 [p,n2] = find_between(x,S,m+1, up)
 n = n2 + 1;
 end

 end

end

Test #1 – 5 January 2018 Computational Methods - 5 / 7 -

In the following questions, you should consider the functions that were studied in the classes
regarding weighted undirected graphs where the weights may be interpreted as distances between
vertices of the graph. If no edge exists between two vertices of a graph G = <V, E>, a virtual edge
with value Inf is assumed in the adjacency matrix G of the graph.

• function G = read_graph(filename)
- returns the adjacency matrix, G, of a weighted undirected

graph specified in file with <filename>. The first line of the
graph contains the number of vertices and arcs, and the
subsequent lines the triple <n1, n2, w>, where w is the
weight of the edge connecting the vertices n1 and n2 (n1 <
n2). The integers n1, n2 and w are separated by semicolons
(“;”).

• function G = write_graph(G, filename)
- writes graph G, given by its adjacency matrix, in file <filename>, with the format specified

above.

• function b = connected(G)
- Boolean b indicates whether the weighted undirected graph specified by adjacency matrix,

G, is connected.

• function T = prim(G)
- Returns a minimum spanning tree, T, of the weighted undirected graph G. Both T and G are

represented by the corresponding adjacency matrices.

• function S = floyd(G)
- returns the matrix S with the shortest distances between any two vertices of the graph G

specified by adjacency matrix, G.

Test #1 – 5 January 2018 Computational Methods - 6 / 7 -

11. (2.5 pt) Specify the function below that, for a graph specified in file GraphFile, that is
guaranteed to be connected, removes all the arcs belonging to a minimum spanning tree from
that graph. Then it checks whether the reduced graph is connected and if so writes into a file
TreeFile the minimum spanning tree of the reduced graph with the same format of the input
file. The returned value c, indicates whether the reduced graph is connected.

function c = reduced_spanning_tree(graphFile, treeFile);

end

G1 = read_graph(graphFile);
T1 = prim(G);
n = size(G,1);
G = G1;
for i = 1:n
 for j = 1:n
 if T1(i,j) < inf
 G(i,j) = inf;
 end
 end
end
c = connected(G)
if c
 T = prim(G);
 write_graph(T, treeFile)
end

Test #1 – 5 January 2018 Computational Methods - 7 / 7 -

12. (2.5 pt) Specify the function below that, for a graph specified by its adjacency matrix G

(assumed to be connected) returns:
• the nodes p and q that are more far apart; and
• d, the distance between these nodes.

function [p,q,d] = farthest(G);

endfunction

 S = floyd(G)
 n = size(G,1);
 d = -inf;
 for i = 1:n
 for j = 1:n
 if S(i,j) > d
 d = S(i,j);
 p = i;
 q = j;
 end
 end
 endfor

