
Lab.	7	Efficient	Array	Sorting			
	

Do the exercises below in the Octave IDE. Make sure the files and the programs are in the same
working directory.

1. Adapt	Merge	Sort	

Adapt the implementation of Merge Sort presented in the slides of class 7, by adding to the results
the number c of comparisons between elements of the vectors, and the extra space x, used to create
new vectors. Use signature

function [S, c, x] = merge_sort(V)

2. Adapt	Quick	Sort	

Adapt the implementation of Quick Sort presented in the slides of class 7, by adding to the results a)
the number a of accesses to the elements of the vector that were considered, and b) the number of
swaps s that were made in elements of the array. Use the signature

function [S, a, s] = quick_sort(V, lo, hi)

3. Assess	efficiency	of	Quick	Sort	and	Merge	Sort	
Check the efficiency (and correctness) of your implementation of the previous items, in the
following vectors:

• V1 – a vector with values from 1 to n
• V2 – a vector with values from n down to 1
• V3 – a vector with elements from 1 to n, arbitrarily sorted.
• V4 – a vector with n elements with n/2 distinct values, sorted in increase order
• V5 – a vector similar to V4, but sorted in decreasing order;
• V6 – a vector similar to V4, but arbitrarily sorted.

4. Compare	efficiency	of	Quick	Sort	and	Merge	Sort	
Compare the results obtained in the previous item, with those obtained with Bubble Sort, as done in
the previous lab class.

