Lab. 1 Introduction to MATLAB / Octave

Do the exercises below should be done in the Octave IDE. You should only use assignments operations with arithmetic expressions including pre-defined MATLAB functions. Also use scripts to avoid "too much typing".

1. Solve a 1st degree equation

Type in two numbers \mathbf{a}_0 and \mathbf{a}_1 solve equation $\mathbf{a}_1\mathbf{x} + \mathbf{a}_0 = \mathbf{0}$.

2. Solve a 2nd degree equation

Type in three numbers \mathbf{a}_0 , \mathbf{a}_1 and \mathbf{a}_2 , solve equation $\mathbf{a}_2\mathbf{x} + \mathbf{a}_1\mathbf{x} + \mathbf{a}_0 = \mathbf{0}$. Note: Try cases with complex solutions.

3. Maximum of n numbers

Type in n numbers \mathbf{x}_1 , \mathbf{x}_1 , ..., \mathbf{x}_n and obtain the maximum of them. **Note:** Use a vector and the adequate predefined function.

4. System of Linear Equations of n numbers

Type in numbers $a_{i,j}$ and b_i (where i in 1...m, j in 1...n, and m, n > 1) and solve the corresponding system of linear equations. Note: Use predefined matrix operations.

5. Length of a vector

Type in numbers \mathbf{a}_i (where i in 1...m, and m > 1) and find the length of the n-dimensional vector $\mathbf{a}_i \mathbf{x}_i$.

Note: Use predefined vector operations.

6. Angle between 2 vectors

Type in numbers \mathbf{a}_i and \mathbf{b}_i (where \mathbf{i} in $\mathbf{1} \dots \mathbf{m}$, and $\mathbf{m} > \mathbf{1}$) and find the angle between the n-dimensional vectors $\mathbf{a}_i \mathbf{x}_i$ and $\mathbf{b}_i \mathbf{x}_i$.

Note: Use predefined vector operations.

7. Angle between 2 planes

Type in numbers \mathbf{a}_i and \mathbf{b}_i (where i in 0..3) and find the angle between the planes A and B (defined by $\sum \mathbf{a}_i \mathbf{x}_i = \mathbf{a}_0$.

8. Power of a Matrix

Type in numbers $\mathbf{a}_{i,j}$ (where i in 1...m, j in 1...n, and m, n > 1) defining matriz A and obtain the matrix B whose members are the power k of the corresponding members of B.

9. Power of a Matrix

Type in non-negative integers numbers a_i (where i in 1..m, and m > 1) and find how many of these are in the interval p..q (where p and q are also integers)