
Dynamic Programming: Graph Algorithms

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semester 2016/2017

Dynamic Programming: Graph Algorithms 9 December 2016 1

Dynamic Programming: Algorithms for Graphs
•  Most graph properties address optimisation goals, namely

a.  Shortest paths
b.  Minimum Spanning Trees
c.  Minimum Hamiltonian tours (Traveling Salesman)
d.  Minimum number of colours

•  Some of these properties (e.g. a and b, but not c nor d), can be computed by
polynomial algorithms.

•  In this case, these algorithms follow a methodology dynamic programming, that is
justified by Mathematical Induction on the Integers:

•  Once an optimal solution is obtained with n nodes, extend it to n+1 nodes.

•  We will see two examples of this, in the following algorithms
–  Minimum Spanning Tree – Prim’s Algorithm
–  Shortest Paths – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms 9 December 2016 2

Minimum Spanning Tree: Prim’s Algorithm
•  As discussed a spanning tree is a subset of a connected graph that has the

topology of a tree and covers all nodes of the graph.

•  It has many applications, namely to provide services to a number of sites (the
nodes) that can be interconnected in several ways (by a graph), but using the a
minimal number of connections that allow all sites to be reached, i.e. a single path
connecting any two nodes.

•  Among these spanning trees one is usually interested in Minimum Spanning Trees
(MST) that minimise the sum of the costs of the arcs selected for the tree.

•  There are many polynomial algorithms that may be used to compute these MSTs,
the most common ones are the Kruskal’s and the Prim’s algorithms.

•  Because of the similarities between the latter and the algorithm to check
connectedness of a graph, we will address the Prim’s Algorithm.

Dynamic Programming: Graph Algorithms 9 December 2016 3

Minimum Spanning Tree: Prim’s Algorithm
•  The Prim´s algorithm is an example of Dynamic Programming that extends a MST

with n nodes to n+1 nodes, with an eager selection of the new node (i.e. once the
node is selected, the selection is not backtracked).

•  The algorithm can be understood as a process of increasing the size of a current
MST, starting with 1 node and ending with all the nodes, and specified as follows:

Maintain two sets of nodes: In and Out, where In is the set of nodes already included
in a current MST and Out those not yet included.

1.  Select arbitrarily a node from the tree to initialise the In set, and put the others in
the Out set;

2.  While there are nodes in the Out set,

–  Find which node from the Out set has an arc of least cost to one connecting it to
one of the nodes of the In set;

–  Transfer the node from the Out set to the In set and include the least cost arc in
the current MST.

Dynamic Programming: Graph Algorithms 9 December 2016 4

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

In = []
Fr = []
Out =
[a,b,c,d,e,f,g]

Minimum Spanning Tree: Prim’s Algorithm

9 December 2016 Dynamic Programming: Graph Algorithms 5

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

Chose an arbitrary node as the
seed for the spanning tree

In = [e]
Fr = []
Out = [a,b,c,d,f,g]

Minimum Spanning Tree: Prim’s Algorithm

9 December 2016 Dynamic Programming: Graph Algorithms 6

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Establish the nodes in the
Frontier, and

•  Find the shortest link between
node in the In and Fr sets

<b,e,5>

In = [e]
Fr = [b,f,g]
Out = [a,c,d]

Minimum Spanning Tree: Prim’s Algorithm

9 December 2016 Dynamic Programming: Graph Algorithms 7

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Move to the In set, the selected
node from the Frontier

•  Add the arc to the spanning tree
<b,e,5>

In = [b,e]
Fr = [f,g]
Out = [a,c,d]

9 December 2016 Dynamic Programming: Graph Algorithms 8

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Establish the nodes in the
Frontier, and

•  Find the shortest link between
node in the In and Fr sets

<b,c,3>

In = [b,e]
Fr = [a,c,f,g]
Out = [d]

9 December 2016 Dynamic Programming: Graph Algorithms 9

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Move to the In set, the selected
node from the Frontier

•  Add the arc to the spanning tree
<b,c,3>

In = [c,b,e]
Fr = [a,f,g]
Out = [c]

9 December 2016 Dynamic Programming: Graph Algorithms 10

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Establish the nodes in the
Frontier, and

•  Find the shortest link between
node in the In and Fr sets

<c,f,2>

In = [c,b,e]
Fr = [a,f,g]
Out = [d]

9 December 2016 Dynamic Programming: Graph Algorithms 11

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Move to the In set, the selected
node from the Frontier

•  Add the arc to the spanning tree
<c,f,2>

In = [f,c,b,e]
Fr = [a,g]
Out = [c]

9 December 2016 Dynamic Programming: Graph Algorithms 12

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Establish the nodes in the
Frontier, and

•  Find the shortest link between
node in the In and Fr sets

<f,d,4>

In = [f,c,b,e]
Fr = [d,a,g]
Out = []

9 December 2016 Dynamic Programming: Graph Algorithms 13

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Move to the In set, the selected
node from the Frontier

•  Add the arc to the spanning tree
<f,d,4>

In = [d,f,c,b,e]
Fr = [a,g]
Out = []

9 December 2016 Dynamic Programming: Graph Algorithms 14

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Establish the nodes in the
Frontier, and

•  Find the shortest link between
node in the In and Fr sets

<c,a,4>

In = [d,f,c,b,e]
Fr = [a,g]
Out = []

9 December 2016 Dynamic Programming: Graph Algorithms 15

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Move to the In set, the selected
node from the Frontier

•  Add the arc to the spanning tree
<f,d,4>

In = [a,d,f,c,b,e]
Fr = [g]
Out = []

9 December 2016 Dynamic Programming: Graph Algorithms 16

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Establish the nodes in the
Frontier, and

•  Find the shortest link between
node in the In and Fr sets

<e,g,7>

In = [a,d,f,c,b,e]
Fr = [g]
Out = []

9 December 2016 Dynamic Programming: Graph Algorithms 17

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Move to the In set, the selected
node from the Frontier

•  Add the arc to the spanning tree
<e,g,7>

In = [g,a,d,f,c,b,e]
Fr = []
Out = []

9 December 2016 Dynamic Programming: Graph Algorithms 18

Minimum Spanning Tree: Prim’s Algorithm

a

c
d b

e

f

6

4

9

4
2

3

9

5

g 7

6

•  Return the Spanning Tree

9 December 2016 Dynamic Programming: Graph Algorithms 19

Minimum Spanning Tree: Prim’s Algorithm

Minimum Spanning Tree: Prim’s Algorithm
•  Several variants can be used in the implementation of the Prim’s algorithm, using

appropriate data structures that make it more efficient. Here we present a naïf
implementation that nonetheless is sufficient for relatively large graphs.

1.  Select arbitrarily a node from the Graph to initialise the In set, and put the others
in the Out set; Initialise the tree to “empty” – no arcs, i.e. arcs with cost Inf.

2.  While there are nodes in the Out set
–  Find which node from the Out set has an arc of least cost to one connecting it to

one of the nodes of the In set;
–  Transfer the node from the Out set to the In set and include the least cost arc in

the current MST.

Dynamic Programming: Graph Algorithms

function [T] = prim(G);
 n = size(G,1);
 T = ones(n,n)*Inf; In = [1]; Out = 2:n;
 while length(Out) > 0
 ...
 T = ...; In = ...; Out = ...
 endwhile

endfunction

9 December 2016 20

Properties of Graphs
•  The core of the algorithm is to find the arc with least cost connecting an arc

between node of the In and Out sets (implemented as vectors).
•  This can be performed with a standard search for a minimum value in a matrix, but

in this case, restricted to indices of nodes in the In and Out sets.
•  Additionally, the position p of the node in the Out vector is stored, to make it easy

to remove it from the Out set.
•  Finally, the arc is added to T, the current MST, and the In and Out sets updated.

 minArc = Inf;
 for i = 1: length(In)

 for j = 1:length(Out)
 if G(In(i),Out(j)) < minArc

 minArc = G(In(i),Out(j));
 v1 = In(i); v2 = Out(j);
 p = j;

 endif;
 endfor;

 endfor;
 T(v1,v2) = G(v1,v2); T(v2,v1) = G(v2,v1)
 In = [v2,In]; Out = [Out(1:p-1),Out(p+1:end)]

Dynamic Programming: Graph Algorithms 9 December 2016 21

Properties of Graphs
•  The complete algorithm is shown below:

function [T] = prim(G);
 n = size(G,1);
 T = ones(n,n)*Inf;
 In = [1]; Out = 2:n;
 while length(Out) > 0
 minArc = Inf;
 for i = 1: length(In)

 for j = 1:length(Out)
 if G(In(i),Out(j)) < minArc

 minArc = G(In(i),Out(j));
 v1 = In(i); v2 = Out(j); p = j;
 endif;

 endfor;
 endfor;
 T(v1,v2) = G(v1,v2); T(v2,v1) = G(v2,v1)
 In = [v2,In];
 Out = [Out(1:p-1),Out(p+1:end)]
 endwhile

endfunction

Dynamic Programming: Graph Algorithms 9 December 2016 22

Minimum Spanning Tree: Prim’s Algorithm
•  It is easy to prove, by induction, that the algorithm is correct. If T is an MST with least

cost with n nodes, adding to it the least cost arc will make it an MST with least cost
with n+1 nodes (adding any other arc would lead to a higher cost spanning tree).

•  As to the worst cost complexity of the algorithm, with this implementation, we notice
that the while loop is executed n-1 times (n is the number of nodes of the graph, |V|).

•  Finding the minimal cost arc requires two nested loops over ranges with k and n-k
values, that is at most n2/4 executions (for k = n/2) of the body of the loop

•  All operations in the loop are “basic”, and so the complexity of this implementation of
the Prim’s algorithm is O(n*n2/4) i.e. O(|V|3).

•  Note: Implementations with priority queues and other advanced data structures have
better complexity, namely O(|E|+Vlog|V|).

Dynamic Programming: Graph Algorithms

 for i = 1: length(In)
 for j = 1:length(Out)
 …
 endfor;
 endfor

9 December 2016 23

Shortest Paths – Floyd-Warshall’s Algorithm
•  There are many algorithms for finding shortest paths between nodes of weighted

graphs. They include algorithms to find one shortest path between two nodes , like
the Dijskstra algorith, or to find all shortest paths between any two nodes of the
graph, namely the Floyd-Warshall’s (FW) algorithm.

•  As the previous one, the FW algorithm explores dynamic programming in the
following way:

•  If a shortest path is considered between any two nodes, considering all paths through
a List of In nodes with n nodes, this shortest paths can be updated by extending the
list of In nodes with an extra node.

•  Starting with an empty List, and including one node at a time, the final results is the
set of shortest paths between any two nodes.

Dynamic Programming: Graph Algorithms 9 December 2016 24

Shortest Paths – Floyd-Warshall’s Algorithm
•  The algorithm can thus be specified as follows:

•  Initialise a matrix S of shortest paths with the adjacency matrix, that is considers the
direct distances between any two nodes.

–  On iteration one, update S, by considering all indirect paths passing through
node 1.

–  On iteration 2, update S, by considering all indirect paths passing through nodes
1 and 2.

 …
–  On iteration n, update S, by considering all indirect paths passing through nodes

1,2..n, i.e. all paths.

•  After this last iteration the set of all shortest paths between all nodes is stored in
matrix S.

•  Notice that this algorithm only computes the paths with shortest distance between
any two nodes but does not return what these paths are.

–  In fact, a small addition to the algorithm allows the paths to be reconstructed.

Dynamic Programming: Graph Algorithms 9 December 2016 25

•  The implementation of this algorithm is shown now:

•  The external for loop guarantees that all paths passing through nodes 1..k have been
considered previously.

•  The shortest paths are updated by considering the triangular inequality, with paths
passing through node n+1.

Dynamic Programming: Graph Algorithms 9 December 2016 26

Function S = floyd(M)
 S = M;
 n = size(S,1);

 for k = 1:n
 for i = 1:n
 for j = 1:n
 if S(i,k) + S(k,j) < S(i,j)
 S(i,j) = S(i,k) + S(k,j);
 endif
 endfor
 endfor
 endfor
endfunction

Shortest Paths – Floyd-Warshall’s Algorithm

Shortest Paths – Floyd-Warshall’s Algorithm
•  The correction of the algorithm can be proved by induction on the number of nodes

considered in indirect paths (left as exercise).

•  As to the complexity, it is easy to see that the algorithm requires 3 nested or loops of
size n, with basic operaton in the body,

•  The complexity of the algorithm is thus O(|V|3).

•  Notice that algorithms to compute shortest paths between 2 nodes, like the Dijskstra
algorithm have complexity O(|V|2), but only consider a pair (not all) of nodes.

Dynamic Programming: Graph Algorithms 9 December 2016 27

 for k = 1:n
 for i = 1:n
 for j = 1:n
 if S(i,k) + S(k,j) < S(i,j)
 S(i,j) = S(i,k) + S(k,j);
 endif
 endfor
 endfor
 endfor

Path Reconstruction – Floyd-Warshall’s Algorithm
•  The previous algorithm does not provide the shortest paths between any two nodes,

but rather the shortest distances of any path between the nodes.
•  Nevertheless, these paths may be easily reconstructed if the initial arc of any shortest

path between two nodes is recorded in a matrix Next (for next node).
•  For every pair <i,j> the matrix is initialised with j, i.e. it assumes a direct path from I to

j with no intermediate nodes.

•  In the inner loop of the FW algorithm, if a new shortest path is found, the new leading
arc is updated accordingly

•  The complexity of the algorithm is thus O(|V|3).

•  Notice that algorithms to compute shortest paths between 2 nodes, like the Dijskstra
algorithm have complexity O(|V|2), but only consider a pair (not all) of nodes.

Dynamic Programming: Graph Algorithms 9 December 2016 28

 for i = 1:n,
 for j = 1:n
 Next(i,j) = j;

 endfor,
 endfor

 if S(i,k) + S(k,j) < S(i,j)
 S(i,j) = S(i,k) + S(k,j);
 Next(i,j) = Next(i,k);
 endif

•  The extended FW algorithm is shown below, returning the Next matrix.

Path Reconstruction – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms 9 December 2016 29

function [S,Next] = floyd(M)
 S = M;
 n = size(S,1);
 for i = 1:n,
 for j = 1:n
 Next(i,j) = j;

 endfor,
 endfor

 for k = 1:n
 for i = 1:n
 for j = 1:n
 if S(i,k) + S(k,j) < S(i,j)
 S(i,j) = S(i,k) + S(k,j);
 Next(i,j) = Next(i,k);
 endif
 endfor
 endfor
 endfor
endfunction

•  Once the matrix Next is returned the path between any two nodes can be obtained by
following the trail indicated by matrix Next, as shown below

•  With this reconstruction technique, the complexity of the FW algorthm is not
changed , and the paths are only computed when needed.

Path Reconstruction – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms 9 December 2016 30

function P = path(u,v,Next)
 if N(u,v) == inf
 P = [];
 return;
 endif
 P = [u];
 while u != v
 u = Next(u,v)
 P = [P,u];
 endwhile
endfunction

