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Dynamic Programming: Algorithms for Graphs 
•  Most graph properties address optimisation goals, namely 

a.  Shortest paths 
b.  Minimum Spanning Trees 
c.  Minimum Hamiltonian tours (Traveling Salesman) 
d.  Minimum number of colours 

•  Some of these properties (e.g. a and b, but not c nor d),  can be computed by 
polynomial algorithms. 

•  In this case, these algorithms follow a methodology dynamic programming, that is 
justified by Mathematical Induction on the Integers: 

•  Once an optimal solution is obtained with n nodes, extend it to n+1 nodes. 

•  We will see two examples of this, in the following algorithms 
–  Minimum Spanning Tree – Prim’s Algorithm 
–  Shortest Paths – Floyd-Warshall’s Algorithm 
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Minimum Spanning Tree: Prim’s Algorithm 
•  As discussed a spanning tree is a subset of a connected graph that has the 

topology of a tree and covers all nodes of the graph. 

•  It has many applications, namely to provide services to a number of sites (the 
nodes) that can be interconnected in several ways (by a graph), but using the a 
minimal number of connections that allow all sites to be reached, i.e. a single path 
connecting any two nodes. 

•  Among these spanning trees one is usually interested in Minimum Spanning Trees 
(MST) that minimise the sum of the costs of the arcs selected for the tree. 

•  There are many polynomial algorithms that may be used to compute these MSTs, 
the most common ones are the Kruskal’s and the Prim’s algorithms. 

•  Because of the similarities between the latter and the algorithm to check 
connectedness of a graph, we will address the Prim’s Algorithm. 
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Minimum Spanning Tree: Prim’s Algorithm 
•  The Prim´s algorithm is an example of Dynamic Programming that extends a MST 

with n nodes to n+1 nodes, with an eager selection of the new node (i.e. once the 
node is selected, the selection is not backtracked). 

•  The algorithm can be understood as a process of increasing the size of a current 
MST, starting with 1 node and ending with all the nodes, and specified as follows: 

Maintain two sets of nodes: In and Out, where In is the set of nodes already included 
in a current MST and Out those not yet included. 

1.  Select arbitrarily a node from the tree to initialise the In set, and put the others in 
the Out set; 

2.  While there are nodes in the Out set,  

–  Find which node from the Out set has an arc of least cost to one connecting it to 
one of the nodes of the In set; 

–  Transfer the node from the Out set to the In set and include the least cost arc in 
the current MST.  
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In = [] 
Fr = []  
Out = 
[a,b,c,d,e,f,g] 

Minimum Spanning Tree: Prim’s Algorithm 
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Chose an arbitrary node as the 
seed for the spanning tree  
 
In = [e] 
Fr = []  
Out = [a,b,c,d,f,g] 

Minimum Spanning Tree: Prim’s Algorithm 
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•  Establish the nodes in the 
Frontier, and  

•  Find the shortest link between 
node in the In and Fr sets 

<b,e,5> 
 

In  = [e] 
Fr  = [b,f,g]  
Out = [a,c,d] 

Minimum Spanning Tree: Prim’s Algorithm 
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•  Move to the In set, the selected 
node from the Frontier 

•  Add the arc to the spanning tree 
<b,e,5> 

 
In  = [b,e] 
Fr  = [f,g]  
Out = [a,c,d] 
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•  Establish the nodes in the 
Frontier, and  

•  Find the shortest link between 
node in the In and Fr sets 

<b,c,3> 
 

In  = [b,e] 
Fr  = [a,c,f,g]  
Out = [d] 
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•  Move to the In set, the selected 
node from the Frontier 

•  Add the arc to the spanning tree 
<b,c,3> 

 
In  = [c,b,e] 
Fr  = [a,f,g]  
Out = [c] 
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•  Establish the nodes in the 
Frontier, and  

•  Find the shortest link between 
node in the In and Fr sets 

<c,f,2> 
 

In  = [c,b,e] 
Fr  = [a,f,g]  
Out = [d] 

9 December 2016 Dynamic Programming: Graph Algorithms 11 

Minimum Spanning Tree: Prim’s Algorithm 



a 

c 
d b 

e 

f 

6

4

9

4
2
 
 

3

9

5

g 7

6

•  Move to the In set, the selected 
node from the Frontier 

•  Add the arc to the spanning tree 
<c,f,2> 

 
In  = [f,c,b,e] 
Fr  = [a,g]  
Out = [c] 
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•  Establish the nodes in the 
Frontier, and  

•  Find the shortest link between 
node in the In and Fr sets 

<f,d,4> 
 

In  = [f,c,b,e] 
Fr  = [d,a,g]  
Out = [] 
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•  Move to the In set, the selected 
node from the Frontier 

•  Add the arc to the spanning tree 
<f,d,4> 

 
In  = [d,f,c,b,e] 
Fr  = [a,g]  
Out = [] 
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•  Establish the nodes in the 
Frontier, and  

•  Find the shortest link between 
node in the In and Fr sets 

<c,a,4> 
 

In  = [d,f,c,b,e] 
Fr  = [a,g]  
Out = [] 
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•  Move to the In set, the selected 
node from the Frontier 

•  Add the arc to the spanning tree 
<f,d,4> 

 
In  = [a,d,f,c,b,e] 
Fr  = [g]  
Out = [] 
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•  Establish the nodes in the 
Frontier, and  

•  Find the shortest link between 
node in the In and Fr sets 

<e,g,7> 
 

In  = [a,d,f,c,b,e] 
Fr  = [g]  
Out = [] 
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•  Move to the In set, the selected 
node from the Frontier 

•  Add the arc to the spanning tree 
<e,g,7> 

 
In  = [g,a,d,f,c,b,e] 
Fr  = []  
Out = [] 
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•  Return the Spanning Tree 
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Minimum Spanning Tree: Prim’s Algorithm 
•  Several variants can be used in the implementation of the Prim’s algorithm, using 

appropriate data structures that make it more efficient. Here we present a naïf 
implementation that nonetheless is sufficient for relatively large graphs. 

1.  Select arbitrarily a node from the Graph to initialise the In set, and put the others 
in the Out set; Initialise the tree to “empty” – no arcs, i.e. arcs with cost Inf. 

2.  While there are nodes in the Out set 
–  Find which node from the Out set has an arc of least cost to one connecting it to 

one of the nodes of the In set; 
–  Transfer the node from the Out set to the In set and include the least cost arc in 

the current MST.  

Dynamic Programming: Graph Algorithms 

function [T] = prim(G); 
   n = size(G,1); 
   T = ones(n,n)*Inf;  In = [1]; Out = 2:n; 
 while length(Out) > 0     
  ... 
  T = ...; In = ...; Out = ... 
 endwhile 

endfunction 
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Properties of Graphs 
•  The core of the algorithm is to find the arc with least cost connecting an arc 

between node of the In and Out sets (implemented as vectors). 
•  This can be performed with a standard search for a minimum value in a matrix, but 

in this case, restricted to indices of nodes in the In and Out sets. 
•  Additionally, the position p of the node in the Out vector is stored, to make it easy 

to remove it from the Out set. 
•  Finally, the arc is added to T, the current MST, and the In and Out sets updated. 

  minArc = Inf;    
  for i = 1: length(In) 

    for j = 1:length(Out)  
      if G(In(i),Out(j)) < minArc 

               minArc = G(In(i),Out(j)); 
               v1 = In(i); v2 = Out(j);  
     p = j; 

      endif;       
 endfor; 

  endfor; 
  T(v1,v2) = G(v1,v2); T(v2,v1) = G(v2,v1) 
  In = [v2,In]; Out = [Out(1:p-1),Out(p+1:end)] 
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Properties of Graphs 
•  The complete algorithm is shown below: 

function [T] = prim(G); 
   n = size(G,1); 
   T = ones(n,n)*Inf;   
 In = [1]; Out = 2:n; 
 while length(Out) > 0     
  minArc = Inf;    
  for i = 1: length(In) 

    for j = 1:length(Out)  
      if G(In(i),Out(j)) < minArc 

               minArc = G(In(i),Out(j)); 
               v1 = In(i); v2 = Out(j); p = j; 
      endif;       

 endfor; 
  endfor; 
  T(v1,v2) = G(v1,v2); T(v2,v1) = G(v2,v1) 
  In = [v2,In];  
  Out = [Out(1:p-1),Out(p+1:end)] 
 endwhile 

endfunction 
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Minimum Spanning Tree: Prim’s Algorithm 
•  It is easy to prove, by induction, that the algorithm is correct. If T is an MST with least 

cost with n nodes, adding to it the least cost arc will make it an MST with least cost 
with n+1 nodes (adding any other arc would lead to a higher cost spanning tree). 

•  As to the worst cost complexity of the algorithm, with this implementation, we notice 
that the while loop is executed n-1 times (n is the number of nodes of the graph, |V|). 

•  Finding the minimal cost arc requires two nested loops over ranges with k and n-k 
values, that is at most n2/4 executions (for k = n/2) of the body of the loop 

•  All operations in the loop are “basic”, and so the complexity of this implementation of 
the Prim’s algorithm is O(n*n2/4) i.e. O(|V|3). 

•  Note: Implementations with priority queues and other advanced data structures have 
better complexity, namely O(|E|+Vlog|V|). 
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  for i = 1: length(In) 
    for j = 1:length(Out)  
      … 
   endfor; 
  endfor 
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Shortest Paths – Floyd-Warshall’s Algorithm 
•  There are many algorithms for finding shortest paths between nodes of weighted 

graphs. They include algorithms to find one shortest path between two nodes , like 
the Dijskstra algorith, or to find all shortest paths between any two nodes of the 
graph, namely the Floyd-Warshall’s (FW) algorithm. 

•  As the previous one, the FW algorithm explores dynamic programming in the 
following way:  

•  If a shortest path is considered between any two nodes, considering all paths through 
a List of In nodes with n nodes, this shortest paths can be updated by extending the 
list of In nodes with an extra node.  

•  Starting with an empty List, and including one node at a time, the final results is the 
set of shortest paths between any two nodes. 
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Shortest Paths – Floyd-Warshall’s Algorithm 
•  The algorithm can thus be specified as follows: 

•  Initialise a matrix S of shortest paths with the adjacency matrix, that is considers the 
direct distances between any two nodes. 

–  On iteration one, update S, by considering all indirect paths passing through 
node 1. 

–  On iteration 2, update S, by considering all indirect paths passing through nodes 
1 and 2. 

 … 
–  On iteration n, update S, by considering all indirect paths passing through nodes 

1,2..n, i.e. all paths. 

•  After this last iteration the set of all shortest paths between all nodes is stored in 
matrix S. 

•  Notice that this algorithm only computes the paths with shortest distance between 
any two nodes but does not return what these paths are.  

–  In fact, a small addition to the algorithm allows the paths to be reconstructed. 
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•  The implementation of this algorithm is shown now: 

•  The external for loop guarantees that all paths passing through nodes 1..k have been 
considered previously. 

•  The shortest paths are updated by considering the triangular inequality, with paths 
passing through node n+1.  
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Function S = floyd(M) 
 S = M; 
 n = size(S,1); 

   for k = 1:n 
      for i = 1:n 
         for j = 1:n 
            if S(i,k) + S(k,j) < S(i,j) 
               S(i,j) = S(i,k) + S(k,j); 
            endif 
         endfor 
      endfor 
   endfor 
endfunction  

Shortest Paths – Floyd-Warshall’s Algorithm 



Shortest Paths – Floyd-Warshall’s Algorithm 
•  The correction of the algorithm can be proved by induction on the number of nodes 

considered in indirect paths (left as exercise). 

•  As to the complexity, it is easy to see that the algorithm requires 3 nested or loops of 
size n, with basic operaton in the body,  

•  The complexity of the algorithm is thus O(|V|3). 

•  Notice that algorithms to compute shortest paths between 2 nodes, like the Dijskstra 
algorithm have complexity O(|V|2), but only consider a pair (not all) of nodes. 
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   for k = 1:n 
      for i = 1:n 
         for j = 1:n 
            if S(i,k) + S(k,j) < S(i,j) 
               S(i,j) = S(i,k) + S(k,j); 
            endif 
         endfor 
      endfor 
   endfor 



Path Reconstruction – Floyd-Warshall’s Algorithm 
•  The previous algorithm does not provide the shortest paths between any two nodes, 

but rather the shortest distances of any path between the nodes. 
•  Nevertheless, these paths may be easily reconstructed if the initial arc of any shortest 

path between two nodes is recorded in a matrix Next (for next node). 
•  For every pair <i,j> the matrix is initialised with j, i.e. it assumes a direct path from I to 

j with no intermediate nodes. 

•  In the inner loop of the FW algorithm, if a new shortest path is found, the new leading 
arc is updated accordingly 

•  The complexity of the algorithm is thus O(|V|3). 

•  Notice that algorithms to compute shortest paths between 2 nodes, like the Dijskstra 
algorithm have complexity O(|V|2), but only consider a pair (not all) of nodes. 
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 for i = 1:n,  
  for j = 1:n 
   Next(i,j) = j; 

    endfor,  
 endfor 

            if S(i,k) + S(k,j) < S(i,j) 
               S(i,j) = S(i,k) + S(k,j); 
               Next(i,j) = Next(i,k); 
            endif 



•  The extended FW algorithm is shown below, returning the Next matrix. 

Path Reconstruction – Floyd-Warshall’s Algorithm 
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function [S,Next] = floyd(M) 
 S = M; 
 n = size(S,1); 
 for i = 1:n,  
  for j = 1:n 
   Next(i,j) = j; 

    endfor,  
 endfor 

   for k = 1:n 
      for i = 1:n 
         for j = 1:n 
            if S(i,k) + S(k,j) < S(i,j) 
               S(i,j) = S(i,k) + S(k,j); 
               Next(i,j) = Next(i,k); 
            endif 
         endfor 
      endfor 
   endfor 
endfunction  



•  Once the matrix Next is returned the path between any two nodes can be obtained by 
following the trail indicated by matrix Next,  as shown below 

•  With this reconstruction technique, the complexity of the FW algorthm is not 
changed , and the paths are only computed when needed. 

Path Reconstruction – Floyd-Warshall’s Algorithm 
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function P = path(u,v,Next) 
   if N(u,v) == inf 
      P = []; 
      return; 
   endif 
   P = [u]; 
   while u != v 
      u = Next(u,v) 
      P = [P,u]; 
   endwhile 
endfunction 


