
Search in Vectors

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semester 2016/2017

11 November 2016

Search
•  A key goal in Informatics is to find the information that is needed. And to do so, one

needs some type of search.

•  In this lecture we will focus on finding information in a (numerical) vector. Most of
the techniques discussed may later be adapted to other data structures.

•  In a vector V, of length n, there are two types of searches that are basic:

–  Given an index i, find the value v = V(i), if any;

–  Given a value v, find the index i such that v = V(i), if any;

•  Of course, in a vector these two types of search have completely different
complexity properties.

–  In the first case, all that is needed is to guarantee that index i is valid, i.e. i ≤ n.
•  In a vector this requires a single access to the vector.

–  In the second case, the different values of the vector must be considered.
•  In the worst case, all n values must be considered, requiring n accesses.

String Operations; Input/Output 2

11 November 2016

Sequential earch
•  A general procedure to search for a value in a vector, sequentially, checks the

values one by one.
–  If it finds the value it returns the value of the index where x occurs.
–  Otherwise it stops after checking the last element of V.

•  This sequential search can be specified by the following MATLAB code

String Operations; Input/Output 3

function find (x, V);
% returns the index p of vector V where x is to
% be found; if V does not contain x, then the
% function returns p = 0
 p = 0;
 i = 1;
 while i < n && p == 0
 if V(i) == x
 p = i;
 else
 i = i + 1;
 endif
 endwhile

endfunction

11 November 2016

Search
•  Given the speed of current processors, in many cases, it is acceptable to pay this

cost. But if one is interested in doing several searches in a very large vector, it is
convenient to adopt a better policy.

•  Clearly, a better policy is possible if the information is adequately maintained
(stored) so as to ease the searching task.

•  In the case of a vector, searching is much easier if the vector is sorted:

a)  Even if the search is sequential, as before, there is now the possibility to give
up earlier, if one passes the value of interest;
•  In average, this reduces the number of accesses to n/2.

b)  A better search policy may be quite effective
•  A divide and conquer policy may bound the number of accesses to log2(n).

String Operations; Input/Output 4

11 November 2016

Bipartite Search
•  If the vector S is sorted, than the search for a value x can be delimited between

two indices, lo and up, assuming that if x occurs in S then it should be between
these two indices. Of course the initial indices should be 1 and n (the length of S).

•  As before, the result of the function, p, is either the index where x is or 0 if x does
not occur in S. The search proceeds until either:

–  The value is found (i.e. p > 0); or
–  The interval is empty (i.e. lo > up) .

String Operations; Input/Output 5

function p = find_s_ite(x,V);
 lo = 1;
 up = length(V);
 p = 0;
 while lo <= up && p == 0
 ...
 endwhile

endfunction

11 November 2016

Bipartite Search
•  In each search step, the value in the mid point of the interval, V(mid), is compared

with x. Then

–  If x == V(mid) the value is found, and p becomes the index that is returned.
Moreover, since p is positive the loop is never entered anymore.

–  If x > V(mid), then x, if it occurs in V, must be between indices mid+1 and up.

–  If x < V(mid), then x, if it occurs in V, must be between indices lo and mid-1.

String Operations; Input/Output 6

 while lo < up && p == 0
 mid = floor((lo+up)/2);
 if x == V(mid)
 p = mid;

 elseif x > V(mid)
 lo = mid + 1; % up remains the same

 else % x < V(mid)
 up = mid - 1; % lo remains the same

 endif
 endwhile

11 November 2016

Bipartite Search
•  An alternative way of specifying the search is through a recursive function, i.e. a

a function that calls itself during its execution.

•  Of course, to guarantee that the function finishes execution, there must be a
termination condition that is tested before the recursive call.

•  In this case, this condition is as before: either the value was found or the interval of
interest is empty.

•  Hence the recursive function is specified with parameters lo and up , representing
the limits of the interval of interest, as shown below:

String Operations; Input/Output 7

function p = find_s(x, V);
% returns the index p of a sorted vector S where x
% is to be found; if V does not contain x, then the
% function returns p = 0
 n = length(V);
 p = find_between(x, S, 1, n);

endfunction

11 November 2016

Bipartite Search
•  As with any recursive function, the stopping condition of the recursion must be

tested before calling itself any further.

•  In fact this stopping condition is divided in two parts. From the outset, only the
length of the interval can be checked, as shown.

•  The second part of the condition, whether the value occurs in the vector, is dealt
with inside the if block.

String Operations; Input/Output 8

function p = find_between(x, S, lo, op);
 if lo > up
 mid = floor((lo+up)/2);
 ...

 else
 p = 0
 endif

endfunction

11 November 2016

Bipartite Search

•  It can be checked that, as intended, a recursive call is only made if
–  the interval is not empty (i.e. lo < up) ;
–  The value has not been found (not x== V(mid))

•  In particular, a recursive call of the function is always made with a narrower
interval, which guarantees termination.

String Operations; Input/Output 9

function p = find_between(x, S, lo, op);
 ...
 if lo < up
 mid = floor((lo+up)/2);
 if x == V(mid)
 p = mid
 elseif x > V(mid)
 p = find_between(x, S, i, m-1);

 else % x < V(mid)
 p = find_between(x, S, i+1, m);
 endif
 endif

endfunction

11 November 2016

Bipartite Search
•  This type of binary search, that is followed by both versions of the function,

requires log2(n) accesses to the vector.
–  Access 0 is made to an interval of size n; 0 à n
–  Access 1 is made to an interval of size n/2; 1 à n/21

–  Access 2 is made to an interval of size n/4; 2 à n/22

 …
–  Access k is made to an interval of size 1; k à n/2k

•  Since in every call to the function the interval is halved, than the number of calls k,
until the interval has size 1 is such that n/2k = 1, i.e.

k = log2(n)

•  In this analysis we do not take into account the rounding that is used to obtain
integer indices, but for large values of n this does not make much of a difference.

•  Moreover the base of the logarithm that is chosen is not a big issue, since the ratio
between logarithms of diffeernt bases is a constant. In particular,

log2(n) = ln(n) / ln(2)

String Operations; Input/Output 10

11 November 2016

Bipartite Search
•  More formally, we typically specify the asymptotic complexity of an algorithm by

the O notation.

•  Given a problem of size n, an algorithm is said to be of temporal complexity O(f(n))
if we have

where

–  k is a constant.

–  t(n) is number of “simple” operations, executed in constant time, it requires;

–  the size n has a more formal definition but can be regarded as the number of
scalar values that are needed to define the problem. In case of a vector, is the
number of its elements.

•  Hence finding an elements by sequential search in an array of size n has
complexity O(n).

•  Finding it on a sorted array of the same size is O(ln(n)).

String Operations; Input/Output 11

lim t(n) ≤ k*f(n)
 n -> ∞

11 November 2016

Sorting
•  Of course, sorting a vector takes time! If the number of required searches is small,

it might not pay off to spend a lot of time in the sorting, to save a small time in the
search. But for large values of n, the speed up in the search can be very large.

•  For n = 1010, the size of the population of a middle sized country as Portugal,
rather than 5*109 accesses we only need about ln(1010) ≈ 33 accesses, a speed
up of about 108 in each search!

•  If each access takes 1 µsec, than a bipartite search is done in 33µsec, whereas
sequential search would require 5*109 µsec, i.e. 5000 sec, which is more than 1
hour!!!

•  Of course, the data structure must be sorted, and this takes time, but often it can
be done at idle times (i.e. at night) so that the accesses can be done very
efficiently during normal office hours (i.e. daytime).

String Operations; Input/Output 12

11 November 2016

Vector Sort
•  So sorting is a possibly one of the most used and studied operations in Information

Systems. Given its relevance, a number of algorithms have been proposed for
sorting, and in particular for sorting vectors. Among them we can list:

–  Insert Sort
–  Bubble sort
–  Quick Sort
–  Bucket Sort
–  Heap Sort
–  Quick Sort

•  We will next study some of them. The simplest ones have complexity O(n2) ,
whereas the best have complexity O(n� ln(n)) . For small values of n both are
acceptable, but for larger ones, the best algorithms are needed.

String Operations; Input/Output 13

For n = 103 and 1 op = 1 ns, we have
•  n2 ≈ 106 ns ≈ 1 msec
•  n� ln(n) ≈ 7000 ns ≈ 7 µsec

For n = 1010 we have
•  n2 ≈ 1020 ns ≈ 132 years
•  n� ln(n) ≈ 2.3 � 1011 ns (4 min)

11 November 2016

Insert Sort
•  Insert sort is an algorithm that progressively sorts the beginning of the vector.

•  At each step, it assumes that a prefix of size k of the vector, i.e. the first k
elements of the vector, are already sorted.

•  Then it proceeds by inserting the k+1th element in this prefix, to obtain a new prefix
of size k+1.

•  Of course this operation must be executed n-1 times

–  Starting with a prefix of size 1 and inserting the 2nd element in it

–  Continuing with a prefix of size 2 and inserting the 3rd element in it

–  …

–  Ending with a prefix of size n-1 and inserting the nth element in it.

•  Of course, at the end of this process, the whole vector is sorted.

String Operations; Input/Output 14

11 November 2016

Insert Sort
•  Insert sort can be illustrated with a simple example

–  Insert the 2nd into the prefix of size 1

–  Insert the 3rd into the prefix of size 2

–  Insert the 4th into the prefix of size 3

–  Insert the 5th into the prefix of size 4

String Operations; Input/Output 15

11 November 2016

Insert Sort
•  The iterative version of the algorithm can be specified following the previous

explanation.

•  The algorithm initialises the sorted vector to be equal to the original vector.

•  Then it executes a for loop, to insert the kth element into the prefix of size k-1.
–  starting with k = 2; and
–  ending with k = n, the size of the vector

String Operations; Input/Output 16

function S = insert_sort_ite(V)
 S = V;
 n = length(V);
 for k = 2:n
 % insert kth element in prefix of size k-1
 endfor;

endfunction;

11 November 2016

Insert Sort
•  The loop block inserts x, the kth element of S, into the prefix of size k-1, by

–  Starting in position i = 1, comparing the values of S(i) with x, and advancing i
while they are less than x;

–  If no value is larger than the kth element, than the prefix of size k+1 is sorted;
–  Otherwise i becomes the position for x, after pushing forward all elements

previously in positions i to k-1 (starting from the end ! - why?).

String Operations; Input/Output 17

 for k = 2:n
 x = S(k);
 i = 1;
 while i < k && S(i) < x i = i+1; endwhile;
 if i < k
 for j = k-1:-1:i
 S(j+1) = S(j);
 endfor;
 S(i) = x;
 endif;
 endfor

11 November 2016

Insert Sort - Complexity
•  The complexity of Insert Sort can be assessed, looking at the structure of the

algorithm.

•  In each loop, the element in the kth position, with value x, is inserted in its position
in a prefix of size k-1, where k varies from 2 to n.

•  This insertion requires x to be compared c times until it finds a larger element in
position c. Then the k-(c+1) elements must be shifted one position to allow x to be
inserted in position c.

•  All things considered, in each loop a total of c+(k-(c+1)) + 1 = k operations are
executed.

–  Note these operations comparisons and assignments are not the same, but their timing
difference is bound by a constant).

•  For all the loops the number of operations is then T(n) = 2+3+…+n, and hence

T(n) = (n-2+1)*(2+n)/2 ≈ n2 / 2

•  Hence the time complexity of Insert Sort is thus O(n2).

String Operations; Input/Output 18

11 November 2016

Bubble Sort
•  Bubble sort is another very simple algorithm for sorting that is based in a simple

idea: if neighbouring elements of the vector (a bubble) are in the wrong order they
should be swapped.

•  Of course this swap operation has to be repeated several times.

–  Sweeping the vector with a bubble from start to end, it is easy to see that in
the end, the largest element of the vector is in the last position.

–  Sweeping it again, the 2nd largest element is in the 2nd last position.

–  Sweeping n times all elements of the vector are in their right order.

•  In fact:

•  Only n-1 sweeps are needed: if all but the smallest element are sorted in the
last positions, the smallest element is correctly placed in the first position;

•  Since the largest elements of the vector are being placed in their right order,
i.e. in the end of the vector, the successive sweeps may be executed in
successively smaller prefixes of the vector.

String Operations; Input/Output 19

11 November 2016

Insert Sort
•  Bubble sort can be illustrated with the same simple example

–  1st sweep, placing the largest element

–  2nd sweep, placing the 2nd largest element

–  3rd sweep, placing the 3rd largest element

–  4th sweep, placing the 4th largest element

–  A 5th sweep is not needed

String Operations; Input/Output 20

11 November 2016

Bubble Sort
•  The iterative version of the algorithm can be specified following the previous

explanation.

•  The algorithm performs n-1 sweeps of the bubble, each sweep ending in
successively smaller positions of the bubble, starting n position n and ending in
position 2.

String Operations; Input/Output 21

function S = bubble_sort_ite(V)
 S = V;
 n = length(V);
 for k = n:-1:2
 % sweeps a bubble from positions 1 to k
 endfor;

endfunction;

11 November 2016

Bubble Sort
•  In each sweep, the bubble progressively advances, its first element starting in

position 1 and ending in position k-1.

•  In each position of the bubble, its elements are compared and if needed they are
swapped.

String Operations; Input/Output 22

function S = bubble_sort_ite(V)
 ...
 % sweeping the vector with a bubble
 for i = 1:k-1
 if S(i) > S(i+1)
 x = S(i);
 S(i) = S(i+1);
 S(i+1) = x;
 endif;
 endfor;
 ...

endfunction;

11 November 2016

Bubble Sort - Complexity
•  The complexity of Bubble Sort can be easily assessed, looking at the structure of

the algorithm with 2 nested loops.

•  The body of the second loop, regarding the advance of the bubble in each sweep,
is executed a variable number of times: n-1 in the 1st sweep, n-2 in the 2nd, …, 1 in
the n-1th, i.e.

T(n) = (n-1) + (n-2) + … + 1 = n-1 * (1+ n-1)/2 ≈ n2/2

•  Hence the time complexity of bubble sort is O(n2).

String Operations; Input/Output 23

 ...
 for k = n:-1:2
 for i = 1:k-1
 ...
 endfor;
 endfor
 ...

