
Strings and Input/Output Operations

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semester 2016/2017

4 November 2016

Text Processing
•  Much useful information is not numeric and takes the form of text (e.g. names,

documents, ...). Hence the need to represent text and to subsequently process it.

•  All programming languages support text data types, namely

–  Characters; and

–  Strings (sequences of characters).

•  Basic 128 characters, include letters, digits, punctuation and control characters,
and are usually represented by their ASCII (American Standard Code for
Information Interchange) codes.

•  Notice that 128 different characters require 7 bits to be represented (128 = 27).

•  With an 8th bit (initially meant for parity checking), the extended ASCII code allows
the representation of 128 more characters used in several languages (other than
English).

String Operations; Input/Output 2

4 November 2016

Text Processing
•  The characters represented in 7bit ASCII code are:

–  Letters (52), uppercase (26) e lowercase (26)

–  Digits (10)

–  Space and other punctuation “visible” characters (34)
•  ‘ “ () [] { } , . : ; = < > + - * \ | / ^ ~ ´ ` # $ % & _ ! ? @

–  Control (invisible) characters (32)
•  horizontal tab (\t), new line (\n), alert (\a), ...

•  With an 8th bit, other 128 characters can be represented, such as

–  ç, ã, ñ, š , ø , ∞, ← ϕ, Σ, ш, غغ, אל, ך

•  The representation of other alphabets (Chinese, Arab, Indian, ...) require 16 bits (a
total of 216 = 65536 characters) and is supported in Unicode (widely adopted in the
Internet).

•  Unicode subsumes the ASCII code (the initial 256 characters are the same).

String Operations; Input/Output 3

4 November 2016

Strings
•  Strings are sequences of characters, and text can be regarded as a “big” string.

•  To assign a variable with a string, the text must be delimited by quotation marks (“)
or apostrophs (‘). For example,
–  x = “this is a string”

•  Having two delimiters is quite handy, when the text includes one of them, as in
–  nome = “Rui d’Almeida” ; or
–  frase = ‘Ele disse “Basta” e saiu.’
… although escape sequences can be used
–  nome = ‘Rui d’’Almeida’ ; or
–  frase = “Ele disse \“Basta\” e saiu.”
… and these are sometimes unescapable
–  frase_completa = “Rui d’Almeida disse \“Basta\” e saiu.”
–  frase_completa = ‘Rui d’’Almeida disse “Basta” e saiu.’

•  Note: In MATLAB special characters (e.g. ç, ã) should be avoided in strings, as the
support is limited and cumbersome (e.g. ç is represented by \303.)

String Operations; Input/Output 4

4 November 2016

Escape Sequences

•  The following escape sequences are useful for referring special non visible
characters, namely control characters.

•  There are some differences in the handling of the delimiters and escape
characters, so the “” should be preferred. The following escape sequences are
accepted in MATLAB (wih “ delimiters).

\\ back slash” (\)
\” quotation (”)
\’ apostrophe (‘)
\0 nil (control-@ (code 0)
\a alert (control-g with code 7)
\b back (control-h with code 8)
\f new page (control-l with code 12).
\n new line (control-j with code 10).
\r return (control-m with code 13).
\t horizontal tab (control-i with code 9).
\v vertical tab (control-k with code 11).

String Operations; Input/Output 5

4 November 2016

String Operations

•  Strings are encoded as unidimensional arrays (vectors) of characters, so the usual
operations on vectors can be used to compose and decompose strings.

Concatenation

•  Strings can be concatenated either with array operations or with the predefined
functions strcat and cstrcat (the first function trims the leading and trailing spaces)

>> name = "rui”
name = rui
>> surname = "santos”
surname = santos
>> fullname1 = [name, " ", surname]
fullname = rui santos
>> fullname2 = strcat(name, " ", surname)
fullname = ruisantos
>> fullname3 = cstrcat(name, " ", surname)
fullname = rui santos

String Operations; Input/Output 6

4 November 2016

String Operations

Projection (Extraction) of Substrings

•  Projection of strings to some of their substrings (or characters) can be obtained
through the usual vector operations,

•  or through the substr predefined function.

>> text = ”This is a string.”
text = This is a string.
>> pre = text(1:6) % all chars between the 1st and 6th
pre = This i
>> pos = text(9:end) % all chars between the 9th and last
pos = a string.

>> text = ”This is a string.”
>> fix = substr(text,6,5) % 5 chars starting at the 6th

fix = is a st

String Operations; Input/Output 7

4 November 2016

String Operations

Substring Search

•  If one is interested in finding the position(s) of a substring within a string, the
findstr function can be used.

>> text = ”This is a string.”
text = This is a string.
>> findstr(“string”, text)
ans = 11
>> findstr(“i”, text)
ans = 3 6 14
>> findstr(“z”, text)
ans = [](0x0)

String Operations; Input/Output 8

4 November 2016

String Operations

Comparing Strings

•  The previous example involves the comparison of (sub)strings. Strings can of
course be compared by comparing each of their characters (accessed with
projections).

•  Given its relevance, the predefined Boolean function strcmp compares two strings

>> text1 = ”text 1”
text1 = text 1
>> text2 = ”text 2”
text2 = text 2
>> strcmp(text1,text2)
ans = 0
>> strcmp(text1,text1)
ans = 1

String Operations; Input/Output 9

4 November 2016

String Operations

Comparing Strings Lexicographically

•  Sometimes one is interested in checking whether a string precedes (in
lexicographic order) another string.

•  There is no predefined function for this Boolean function, but one can define it, by
comparing the characters of the strings.

•  Characters can be compared lexicographically, by simply using the usual relational
operators. In fact this comparison is made on the codes of the characters that
define their order (codes can be obtained by function toascii (or multiplying it by 1!
– why?)

>> “a” < “b”
>> “f” < “c”
>> “1” < “3”

>> “9” < “A”
>> “Z” < “a”

>> toascii(“e”)
>> “f”*1

ans = 1
ans = 0
ans = 1

ans = 1
ans = 1

ans = 101
ans = 102
 String Operations; Input/Output 10

4 November 2016

String Operations

Comparing Strings Lexicographically

•  Now the strings can be compared with function strbef defined as defined below.

•  The characters are compared one by one until a difference is spotted (and the
function immediately ends – return statement). Otherwise, the shorter string is the
before the longer (e.g. “maria” is lexicographically before “mariana”).

function before = strbef(st1, st2)
 i = 1; % start comparison in char 1
 while length(st1) >= i && length(st2) >= i
 if st1(i) == st2(i)
 i = i+1;
 else
 before = (st1(i) < st2(i));
 return;
 endif
 endwhile
 before = (length(st1) < length(st2));
endfunction

String Operations; Input/Output 11

4 November 2016

String Operations

Comparing Strings Lexicographically

•  Since comparisons are made between the codes of the characters it is often
important to guarantee that characters have the same case, so as to avoid that
“Mariana” is considered before “maria”.

•  The string operations toupper and tolower allow the conversion of all letters to the
same case (upper and lower respectively) so that they can be properly compared.

>> strbef("Mariana", "maria")
ans = 1
>> strbef(toupper("Mariana"), toupper("maria"))
ans = 0
>> tolower("Mariana”)
ans = mariana

String Operations; Input/Output 12

4 November 2016

String Operations

Comparing Strings Lexicographically

•  When comparing strings it is often necessary to remove leading and trailing spaces,
since they are not usually significant. This can be done with functions

o  strtrim – removes removes both leading and trailing spaces

o  deblank – only removes the trailing spaces

•  In longer strings, not adequately formatted, it is also convenient to convert newlines
into spaces and remove duplicate spaces. This is left as an exercise.

>> text = “ Spaces: 2 leading, 4 trailing “;
>> length(text)
ans = 35
>> length(strtrim(text))
ans = 29
>> length(deblank(text))
ans = 31

String Operations; Input/Output 13

4 November 2016

String Operations

Strings and Numbers

•  Another commonly used conversion is between text that represents numerical
information, and the numbers it represents.

•  A string simply encodes the digits of a number, not the number itself, and this has to
be taken into account for handling this information.

•  Two functions, str2num and num2str allow the conversion between these two
representations

>> st1 = “15”;
>> st2 = “426”;
>> st3 = “158”;
>> st1 + st2
error: mx_el_lt: nonconformant arguments (op1 is 1x3, op2 is 1x2)
>> st2 + st3
ans = 5 7 14

String Operations; Input/Output 14

4 November 2016

String Operations

Strings and Numbers

•  To obtain the expected results, conversion to the appropriate data types is needed.

>> st1 = “15”;
>> st2 = “426”;
>> st3 = “158”
>> x = str2num(st1) + str2num(st2)
x = 441
>> y = str2num(st2) + str2num(st3)
y = 584
>> v1 = [x1,x2]
v1 =
 441 584
>> v2 = [num2str(x1),num2str(x2)]
v2 = 441584
>> = 2*v2
ans =
 8 8 2 10 16 8
 String Operations; Input/Output 15

4 November 2016

String Operations

String Operations; Input/Output 16

Information Boolean Functions about Types

•  In addition to the conversion functions a number of information Boolean functions is
available in MATLAB to obtain the type of the character (or string) being used
–  isalpha(s) 1 if s is alphabetic (a letter - upper or lower case)
–  islower(s) 1 if s is lower case letter
–  isupper(s) 1 if s is upper case letter
–  isdigit(s) 1 if s is a digit
–  isalnum(s) 1 if s is alphanumeric (a digit or alphabetic)
–  isspace(s) 1 if s is space
–  ispunct(s) 1 if s is a punctuation character
–  iscntrl(s) 1 if s is a control character

>> st = “47 is Prime.”;
>> d = isdigit(st)
>> l = islower(st)
>> u = isupper(st)
>> s = isspace(st)
>> p = ispunct(st)

d = 1 1 0 0 0 0 0 0 0 0 0 0
l = 0 0 0 1 1 0 0 1 1 1 1 0
u = 0 0 0 0 0 0 1 0 0 0 0 0
s = 0 0 1 0 0 1 0 0 0 0 0 0
p = 0 0 0 0 0 0 0 0 0 0 0 1

4 November 2016

File Input / Output

String Operations; Input/Output 17

•  When the amount of data is large, it is not practical/feasible to enter data and read
program results from the terminal. In most cases, we use files to have permanent
access to this data (here we will only consider text files – that can be read by any text
processor, such as notepad).

•  Files are managed by a file system (part of the operation system – Windows, Linux,
MacOS) and files are organised in a (inverted) tree.

•  At the top there is a root directory that recursively contains other directories (the
branches of the tree) and possibly files (the leafs of the tree).

•  MATLAB supports some typical file system instructions, that can be used either in a
program or at the terminal. Among the most useful

o  pwd – returns a string representing the current directory
o  dir – returns a string representing directories and files of the current directory
o  cd name – changes the current directory to the directory with name
o  cd .. – changes the current directory to its parent directory

o  cd // – makes the root as the current directory

4 November 2016

File Input / Output

String Operations; Input/Output 18

•  To read to or write from a file, it is necessary a) to open it, and after handling its data
(reading from / writing into), the flise should be closed.

•  In MATLAB, opening a file is done with instruction
–  fopen(fileName, mode)

where
–  fileName is the name of the file (as seen from the current directory)
–  mode is either “r” for read or “w” for write

•  The function returns a positive integer (the channel number) that should be
subsequently used to read/write data and finally to close the file.
•  Note: If the file could not be opened, the function returns -1.

•  Once used, the file should be closed with instruction
–  fclose(fid)

where
–  fid is the channel number that was obtained when the file was opened.

•  Note: This function returns 0 if the file was properly closed or -1 otherwise.

4 November 2016

File Input / Output

String Operations; Input/Output 19

•  The access to an open file is sequential, i.e. data items are read/written one after the
other with no going back or direct access to some kth item of the file.

•  To write (text) data in a file, the following MATLAB instruction may be used
–  fprintf(fid, template, par1, par2, …, parn)

where
–  fid is the channel number that was obtained when the file was opened.
–  template is the string that is written, where the parameters pari replace the “place

holders” (in the sequence they are specified), which can take the following types
•  %[n]i an integer parameter , with optional n characters (leading spaces)
•  %[m.n]f a real number with optional m characters, n after the decimal dot.
•  %[n]s a string with (optional) n characters (padded with leading spaces)

Example:

>> fprintf(5,“An%10s:%4i and %s %8.3.”,“integer”,17,”decimal”, 4.12)

 à “An integer: 17 and decimal 4.12.”

4 November 2016

File Input / Output

String Operations; Input/Output 20

Some Notes:

1.  The following variants of the fprintf instruction can be used with the exact same
formatting rules, but omitting the file id to

•  printf(template, parameters)
–  writes the string to the terminal

•  sprintf(template, parameters)
–  returns the string (e.g. the string can be assigned to a variable)

2.  Since the place holders of the parameters are specified with a % sign, if the string
to be written includes a “%”, then it is specified by the escape sequence “%%”.

3.  Tabs and newlines (change of line) can be specified in the template by means of
the escape sequences
•  \t for a tab
•  \n for a newline

4 November 2016

File Input / Output

String Operations; Input/Output 21

•  To read text from a text file two functions are quite useful

–  fgetl(fid)

•  Returns a string with the line with the current position of the cursor, i.e. all the
characters that start in the cursor and up to the next newline.

•  It returns -1 if attempting to read beyond the end of the file.

–  feof(fid)

•  A Boolean function that returns whether the end of the file has been reached.

•  Of course, every line must be “parsed” to extract its content that may consist of several
data items.

•  Typically, when data items are separated by some character (e.g. space or comma) the
parsing might be done by finding the positions of the separators (with findstr) and then
extracting the data between the separators.

