
Introduction to Arrays Vectors, Matrices and Beyond

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1º Semestre 2016/2017

Matrices

•  An array is a data structure that groups together a set of values of the same type
(typically numeric), with the stucture of a multidimensional table.

•  The most used arrays have 1 dimension (vectors) or 2 dimensions (matrices), but
arrays of higher dimension are also possible.

•  For example, matrix M represents the multiplication table of the first natural numbers.

•  The two dimensions are known as rows and columns. Hence M is a 3 × 4 M matrix
with 3 rows and 4 columns.

•  Matrices are the basic data type in MATLAB. A single number is in fact maintained in
MATLAB as a 1×1 matrix.

Matrix M

1 2 3 4
1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

Introduction to Arrays - Vectors, Matrices and Beyond 2 24 October 2016

Vectors and Matrices

•  A vector is a special case of a matrix where one of the dimensions has size 1.

•  For example, we may represent in a vector V, with a single row, the squares of the
first 5 natural numbers.

•  Or we may represent in a column a vector U the first 4 prime numbers, .

1 2 3 4 5

1 4 9 16 25

(row) Vector V

(column)

Vector U

1 2

2 3

3 5

4 7

Introduction to Arrays - Vectors, Matrices and Beyond 3 24 October 2016

Initialisation of Arrays

•  Variables may be arrays, and like any variable they must be initialised before being
used. There are several ways of initialising an array variable in MATLAB.

•  The most general form of initializing an array variable is by means of an explicit
declaration of the value of each its elements, thus implicitly defining its dimensions.

•  In MATLAB, different values of the same row are separated by commas or spaces,
and rows are separated by semi-colons (“;”).

•  V = [1, 4 9, 16 25]

•  U = [2; 3; 5; 7]

•  M = [1 2 3 4 ; 2, 4, 6, 8 ; 3 6 9 12]

1 2 3 4 5

1 4 9 16 25Vector V

Matrix M

1 2 3 4
1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

Vector

 U

1 2

2 3

3 5

4 7

Introduction to Arrays - Vectors, Matrices and Beyond 4 24 October 2016

Initialisation of Vectors

•  In MATLAB, vectors can be initialised as ranges, as already used in iterators in the
for loops.

•  By default, vectors defined this way are row vectors. But they can be transposed to
represent column arrays

Introduction to Arrays - Vectors, Matrices and Beyond 5 24 October 2016

>> P = 0:2:10
P =
 0 2 4 6 8 10

>> P = [1:2:7]’
P =
 1
 3
 5
 7

Initialisation of Matrices

•  In MATLAB, once vectors have been defined they can be used to declare parts of
other vectors ...

•  Vectors and matrices may also be used as parts or components (rows or columns) of
matrices that contain them.

Introduction to Arrays - Vectors, Matrices and Beyond 6 24 October 2016

>> P = 0:2:4
>> Q = [6,8,10]
>> R = [P,Q]

>> A = 0:2;
>> B = [1:2:5; 2:2:6]
>> C = [3;7;8]
>> M = [[A;B],C]

Initialisation of Matrices

•  When matrices are “big” they might be initialised to “0s” or “1s” by predefined
instructions, explicitely mentioning the size of each of the dimensions of the matrices.

•  Note: The initialisation of vectors and matrices (even when the exact values of their
elements are not known in advance, as in this case) is useful because it informs the
interpreter of the language of the size of memory that it should allocate for the array.
Although this size may be dynamically changed in MATLAB, such dynamic changes
decrease the efficiency of program execution.

Matrix M1
1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

Vector

 U1

1 0

2 0

3 0

4 0
Vector V1

1 2 3 4 5
1 1 1 1 1

Introduction to Arrays - Vectors, Matrices and Beyond 7 24 October 2016

>> V1 = ones(1,5)

>> U1 = zeros(4,1)

>> M1 = ones(3,4)

Size of Arrays

Introduction to Arrays - Vectors, Matrices and Beyond 8 24 October 2016

•  The predefined function rows(X) and columns(X) can be used, to know the size of
the dimensions of an array variable X,

1 2 3 4 5

1 4 9 16 25

Vector V

Matrix M

1 2 3 4
1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

Vector

 U

1 2

2 3

3 5

4 7

>> rows(V)
ans = 1
>> columns(V)
ans = 5

>> rows(U)
ans = 1
>> columns(U)
ans = 5

>> rows(M)
ans = 3
>> columns(M)
ans = 4

Size of Arrays

Introduction to Arrays - Vectors, Matrices and Beyond 9 24 October 2016

•  Since simple numeric variables are stored as 1 × 1 matrices, their size may also be
queried.

•  For a vector V, be it a row or column vector, the size of its only significant dimension
can also be queried by function length(X).

1 2 3 4 5

1 4 9 16 25

Vector V
Vector

 U

1 2

2 3

3 5

4 7

>> length(V)
ans = 5

>> length(U)
ans = 4

>> a = 5
>> rows(a)
ans = 1
>> columns(a)
ans = 1

Size of Arrays

Introduction to Arrays - Vectors, Matrices and Beyond 10 24 October 2016

•  The predefined function rows(X) and columns(X) can be used, to know the size of
the dimensions of an array variable X,

–  be it a simple variable,

–  or vectors and matrices.

1 2 3 4 5

1 4 9 16 25

Vector V

Matrix M

1 2 3 4
1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

Vector

 U

1 2

2 3

3 5

4 7

>> a = 5
>> rows(a)
ans = 1
>> columns(a)
ans = 1
 >> rows(V)

ans = 1
>> columns(V)
ans = 5

>> rows(U)
ans = 4
>> columns(UV)
ans = 1

Multidimensional Arrays

Introduction to Arrays - Vectors, Matrices and Beyond 11 24 October 2016

•  Arrays with more than 2 dimensions are also possible
in MATLAB where they are called multidimensional
arrays.

•  There is no special syntax to initialise them directly,
i.e. there is no syntactical separator to “enter the 3rd
dimension”.

•  They can nonetheless be initialised with the zeros and
ones functions (and have their value updated later).

•  The number of their dimensions may also be known
by using the predefined functions size and ndims.

>> X = zeros(3,4,2)
X =
ans(:,:,1) =
 0 0 0 0
 0 0 0 0
 0 0 0 0
ans(:,:,2) =
 0 0 0 0
 0 0 0 0
 0 0 0 0

>> size(X)
ans = 3 4 2

>> ndims(X)
ans = 3>>

Access to Array Elements

•  Elements of an array are referred by their position in the matrix, i.e their row and
column indices (the number of the row and the column they occupy in the matrix).

•  Contrary to other languages, in MATLAB row and column indices of a matrix always
start at 1.

•  For convenience, MATLAB allows that the row/column of a row/column vector is
ommited in the reference.

1 2 3 4 5

1 4 9 16 25

Vector V

Matrix M

1 2 3 4
1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

Vector

 U

1 2

2 3

3 5

4 7

Introduction to Arrays - Vectors, Matrices and Beyond 12 24 October 2016

a = V(1,3)
a = V(3)

b = U(4,1)
b = U(4)

c = M(2,3)

Access to Sub-Arrays

•  Arrays can be “extracted” from larger arrays by defining the ranges of the elements
one is interested in.

•  Notice that the selection of a whole dimension may be specified by the full range “:”

•  Also the indices of the subarrays are automatically adjusted so that they start in 1.

Introduction to Arrays - Vectors, Matrices and Beyond 13 24 October 2016

 1 2 3
 4 5 6
 7 8 9
 3 6 9

T

>> V = [1 2 3; 4 5 6; 7 8 9; 3 6 9]
>> S = V(2:3,1:2)
S =
 4 5
 7 8
>> T = V(:,2:3)
T =
 2 3
 5 6
 8 9
 6 9
>> T(2,2)
ans = 6

S

Array Updates

•  Once defined, arrays can be
updated, i.e. have the value of their
elements changed.

•  This is of course quite useful when
the initialisation was made by
means of the zeros and ones
function.

•  For example, two elements of a
matriz M may be swapped, as
shown,

•  Notice that, like in any other swap,
one auxiliary variable is used for
temporarily store one of the
variables.

Introduction to Arrays - Vectors, Matrices and Beyond 14 24 October 2016

>> M = [1,2,3;4,5,6]
M =
 1 2 3
 4 5 6
>> x = M(2,3)
x = 6
>> M(2,3) = M(1,2)
M =
 1 2 3
 4 5 2
>> M(1,2) = x
M =
 1 6 3
 4 5 2

Array Updates
•  In general, one may be interested in changing

all the elements of an array.

•  In its more general form, this can be done by
means of nested for loops, one for each
dimension.

•  For example, one may want to impose that all
elements of a vector V take as values some
function f (for example the decimal logarithm)
of their indices, running a script

Introduction to Arrays - Vectors, Matrices and Beyond 15 24 October 2016

V = 1 1 1 1 1 1 1 1 1 1
V =
 Columns 1 through 7:
 0.00000 0.30103 0.47712 0.60206 0.69897 0.77815 0.84510
 Columns 8 through 10:
 0.90309 0.95424 1.00000

V = ones(1,10)
for i = 1:10
 V(i) = log10(i);
endfor
V

Array Updates
•  Or one may be interested in filling a times table with two nesteded loop, one for each

dimension.

•  Notice that, in this case, the nesting of the loops makes no difference in the final
matrix , but the order in which the elements are computed is diffeernt.

1 2 3 4
1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

1 2 3 4
1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

Introduction to Arrays - Vectors, Matrices and Beyond 16 24 October 2016

M = ones(3,4)
for i = 1:3
 for j = 1:4
 M(i,j) = i*j;
 endfor
endfor

V = ones(3,4)
for j = 1:4
 for i = 1:3
 M(i,j) = i*j;
 endfor
endfor

Array Updates
•  In general, acesses to the elements of an array should not go beyond their current

sizes.

•  For this purpose, and if the size of the arrays is not known, it can be questioned by
function size, that returns an array with the size of each dimension.

Introduction to Arrays - Vectors, Matrices and Beyond 17 24 October 2016

S = 3 4 2
M =
ans(:,:,1) =
 1 2 3 4
 2 4 6 8
 3 6 9 12
ans(:,:,2) =
 2 4 6 8
 4 8 12 16
 6 12 18 24

M = zeros(3,4,2);
S = size(M)
for i = 1:S(1)
 for j = 1:S(2)
 for k = 1:S(3)
 M(i,j,k) = i*j*k;
 end
 end
end
M

Matrix Operations
•  In MATLAB, since the matrix is the basic representation for variables, all matrix (or

vector operations) are available as defined in algebra.

•  The simplest case is the sum / difference of two matrices.

•  Notice that suming arrays of difefernt sizes originaites an error

Introduction to Arrays - Vectors, Matrices and Beyond 18 24 October 2016

>> M = [1 2 3; 4,5,6]
M = 1 2 3 4 5 6
>> N = [2,4,6; 0,1,2]
N = 2 4 6 0 1 2
>> P = M+N
P = 3 6 9 4 6 8

>> V = [1 2 3];
>> U = [1,2,3,4];
>> X = U+V
error: operator +: nonconformant arguments (op1 is 1x4, op2 is 1x3)

Matrix Operations
•  In MATLAB, since the matrix is the basic representation for variables, all matrix (or

vector operations) are available as defined in algebra.

•  The simplest case is the sum / difference of two matrices.

•  Notice that suming arrays of difefernt sizes originaites an error

•  The product is more complicated and will be dicussed later.

Introduction to Arrays - Vectors, Matrices and Beyond 19 24 October 2016

>> M = [1 2 3; 4,5,6]
M = 1 2 3 4 5 6
>> N = [2,4,6; 0,1,2]
N = 2 4 6 0 1 2
>> P = M+N
P = 3 6 9 4 6 8

>> V = [1 2 3];
>> U = [1,2,3,4];
>> X = U+V
error: operator +: nonconformant arguments (op1 is 1x4, op2 is 1x3)

Matrix Dot Operations
•  In many cases we are interested in applying the same operation to all corresponding

elements of two arrays, i.e. to apply pointwise operations.

•  In MATLAB, this is possible, by using dot notation, i.e. by using the wnated operator
preceded by a dot.

•  Notice that although there is no difference between sums and dotted sumsm this is
not the case with multiplication!

Introduction to Arrays - Vectors, Matrices and Beyond 20 24 October 2016

>> M = [1 2 3; 4,5,6]
M =
 1 2 3
 4 5 6
>> N = [2,4,6; 0,1,2]
N =
 2 4 6
 0 1 2
>> P = M .* N
P =
 2 8 18
 0 5 12

Transposition
•  A useful operation on vectors and matrices is the transposition that changes rows

and columns.

Introduction to Arrays - Vectors, Matrices and Beyond 21 24 October 2016

>> M = [1 2 3; 4,5,6]
M =
 1 2 3
 4 5 6
>> N = M’
N =
 1 4
 2 5
 3 6
>> P = M(:,3)’
P =
 3 6

Distribution Operations
•  In many cases we are interested in applying an operation between a scalar and all

the elements of a matrix.

•  In MATLAB, by default this is what happens when the operation is specified in the
natural way.

•  In oher languages, this distribution must be done through nested loops!

Introduction to Arrays - Vectors, Matrices and Beyond 22 24 October 2016

>> M = [1 2 3; 4,5,6]
M =
 1 2 3
 4 5 6
>> a = 5
a = 5
>> Q = a*M
Q =
 5 10 15
 20 25 30

