
http://www.tutorialspoint.com/sqlite/sqlite_php.htm Copyright © tutorialspoint.com

SQLITE PHP TUTORIALSQLITE PHP TUTORIAL

Installation
The SQLite3 extension is enabled by default as of PHP 5.3.0. It's possible to disable it by using --
without-sqlite3 at compile time.

Windows users must enable php_sqlite3.dll in order to use this extension. This DLL is included with
Windows distributions of PHP as of PHP 5.3.0.

For detailed installation instructions, kindly check our PHP tutorial and its official website.

PHP Interface APIs
Following are important PHP routines which can suffice your requirement to work with SQLite
database from your PHP program. If you are looking for a more sophisticated application, then you
can look into PHP official documentation.

S.N. API & Description

1 public void SQLite3::open filename, flags, encryptionkey

Opens an SQLite 3 Database. If the build includes encryption, then it will attempt to use
the key.

If the filename is given as ':memory:', SQLite3::open will create an in-memory database
in RAM that lasts only for the duration of the session.

If filename is actual device file name, SQLite3::open attempts to open the database file
by using its value. If no file by that name exists then a new database file by that name
gets created.

Optional flags used to determine how to open the SQLite database. By default, open uses
SQLITE3_OPEN_READWRITE | SQLITE3_OPEN_CREATE.

2 public bool SQLite3::exec string$query

This routine provides a quick, easy way to execute SQL commands provided by sql
argument which can consist of more than one SQL command. This routine is used to
execute a result-less query against a given database.

3 public SQLite3Result SQLite3::query string$query

This routine executes an SQL query, returning an SQLite3Result object if the query
returns results.

4 public int SQLite3::lastErrorCode void

This routine returns the numeric result code of the most recent failed SQLite request

5 public string SQLite3::lastErrorMsg void

This routine returns english text describing the most recent failed SQLite request.

6 public int SQLite3::changes void

This routine returns the number of database rows that were updated or inserted or
deleted by the most recent SQL statement

http://www.tutorialspoint.com/sqlite/sqlite_php.htm

7 public bool SQLite3::close void

This routine closes a database connection previously opened by a call to SQLite3::open.

8 public string SQLite3::escapeString string$value

This routine returns a string that has been properly escaped for safe inclusion in an SQL
statement.

Connecting To Database
Following PHP code shows how to connect to an existing database. If database does not exist, then
it will be created and finally a database object will be returned.

<?php
 class MyDB extends SQLite3
 {
 function __construct()
 {
 $this->open('test.db');
 }
 }
 $db = new MyDB();
 if(!$db){
 echo $db->lastErrorMsg();
 } else {
 echo "Opened database successfully\n";
 }
?>

Now, let's run above program to create our database test.db in the current directory. You can
change your path as per your requirement. If database is successfully created, then it will give the
following message:

Open database successfully

Create a Table
Following PHP program will be used to create a table in previously created database:

<?php
 class MyDB extends SQLite3
 {
 function __construct()
 {
 $this->open('test.db');
 }
 }
 $db = new MyDB();
 if(!$db){
 echo $db->lastErrorMsg();
 } else {
 echo "Opened database successfully\n";
 }

 $sql =<<<EOF
 CREATE TABLE COMPANY
 (ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL);

EOF;

 $ret = $db->exec($sql);
 if(!$ret){
 echo $db->lastErrorMsg();
 } else {
 echo "Table created successfully\n";
 }
 $db->close();
?>

When above program is executed, it will create COMPANY table in your test.db and it will display
the following messages:

Opened database successfully
Table created successfully

INSERT Operation
Following PHP program shows how we can create records in our COMPANY table created in above
example:

<?php
 class MyDB extends SQLite3
 {
 function __construct()
 {
 $this->open('test.db');
 }
 }
 $db = new MyDB();
 if(!$db){
 echo $db->lastErrorMsg();
 } else {
 echo "Opened database successfully\n";
 }

 $sql =<<<EOF
 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
 VALUES (1, 'Paul', 32, 'California', 20000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
 VALUES (2, 'Allen', 25, 'Texas', 15000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
 VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);
EOF;

 $ret = $db->exec($sql);
 if(!$ret){
 echo $db->lastErrorMsg();
 } else {
 echo "Records created successfully\n";
 }
 $db->close();
?>

When above program is executed, it will create given records in COMPANY table and will display
following two lines:

Opened database successfully
Records created successfully

SELECT Operation
Following PHP program shows how we can fetch and display records from our COMPANY table
created in above example:

<?php
 class MyDB extends SQLite3
 {
 function __construct()
 {
 $this->open('test.db');
 }
 }
 $db = new MyDB();
 if(!$db){
 echo $db->lastErrorMsg();
 } else {
 echo "Opened database successfully\n";
 }

 $sql =<<<EOF
 SELECT * from COMPANY;
EOF;

 $ret = $db->query($sql);
 while($row = $ret->fetchArray(SQLITE3_ASSOC)){
 echo "ID = ". $row['ID'] . "\n";
 echo "NAME = ". $row['NAME'] ."\n";
 echo "ADDRESS = ". $row['ADDRESS'] ."\n";
 echo "SALARY = ".$row['SALARY'] ."\n\n";
 }
 echo "Operation done successfully\n";
 $db->close();
?>

When above program is executed, it will produce the following result:

Opened database successfully
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 20000

ID = 2
NAME = Allen
ADDRESS = Texas
SALARY = 15000

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000

Operation done successfully

UPDATE Operation
Following PHP code shows how we can use UPDATE statement to update any record and then fetch
and display updated records from our COMPANY table:

<?php
 class MyDB extends SQLite3

 {
 function __construct()
 {
 $this->open('test.db');
 }
 }
 $db = new MyDB();
 if(!$db){
 echo $db->lastErrorMsg();
 } else {
 echo "Opened database successfully\n";
 }
 $sql =<<<EOF
 UPDATE COMPANY set SALARY = 25000.00 where ID=1;
EOF;
 $ret = $db->exec($sql);
 if(!$ret){
 echo $db->lastErrorMsg();
 } else {
 echo $db->changes(), " Record updated successfully\n";
 }

 $sql =<<<EOF
 SELECT * from COMPANY;
EOF;
 $ret = $db->query($sql);
 while($row = $ret->fetchArray(SQLITE3_ASSOC)){
 echo "ID = ". $row['ID'] . "\n";
 echo "NAME = ". $row['NAME'] ."\n";
 echo "ADDRESS = ". $row['ADDRESS'] ."\n";
 echo "SALARY = ".$row['SALARY'] ."\n\n";
 }
 echo "Operation done successfully\n";
 $db->close();
?>

When above program is executed, it will produce the following result:

Opened database successfully
1 Record updated successfully
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 25000

ID = 2
NAME = Allen
ADDRESS = Texas
SALARY = 15000

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000

Operation done successfully

DELETE Operation
Following PHP code shows how we can use DELETE statement to delete any record and then fetch
and display remaining records from our COMPANY table:

<?php

 class MyDB extends SQLite3
 {
 function __construct()
 {
 $this->open('test.db');
 }
 }
 $db = new MyDB();
 if(!$db){
 echo $db->lastErrorMsg();
 } else {
 echo "Opened database successfully\n";
 }
 $sql =<<<EOF
 DELETE from COMPANY where ID=2;
EOF;
 $ret = $db->exec($sql);
 if(!$ret){
 echo $db->lastErrorMsg();
 } else {
 echo $db->changes(), " Record deleted successfully\n";
 }

 $sql =<<<EOF
 SELECT * from COMPANY;
EOF;
 $ret = $db->query($sql);
 while($row = $ret->fetchArray(SQLITE3_ASSOC)){
 echo "ID = ". $row['ID'] . "\n";
 echo "NAME = ". $row['NAME'] ."\n";
 echo "ADDRESS = ". $row['ADDRESS'] ."\n";
 echo "SALARY = ".$row['SALARY'] ."\n\n";
 }
 echo "Operation done successfully\n";
 $db->close();
?>

When above program is executed, it will produce the following result:

Opened database successfully
1 Record deleted successfully
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 25000

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000

Operation done successfully
Loading [MathJax]/jax/output/HTML-CSS/jax.js

