
http://www.tutorialspoint.com/sqlite/sqlite_python.htm Copyright © tutorialspoint.com

SQLITE PYTHON TUTORIALSQLITE PYTHON TUTORIAL

Installation
The SQLite3 can be integrated with Python using sqlite3 module which was written by Gerhard
Haring. It provides an SQL interface compliant with the DB-API 2.0 specification described by PEP
249. You do not need to install this module separately because its being shipped by default along
with Python version 2.5.x onwards.

To use sqlite3 module, you must first create a connection object that represents the database and
then optionally you can create cursor object which will help you in executing all the SQL
statements.

Python sqlite3 module APIs
Following are important sqlite3 module routines, which can suffice your requirement to work with
SQLite database from your Python program. If you are looking for a more sophisticated
application, then you can look into Python sqlite3 module's official documentation.

S.N. API & Description

1 sqlite3.connectdatabase[, timeout, otheroptionalarguments]

This API opens a connection to the SQLite database file database. You can use
":memory:" to open a database connection to a database that resides in RAM instead of
on disk. If database is opened successfully, it returns a connection object.

When a database is accessed by multiple connections, and one of the processes modifies
the database, the SQLite database is locked until that transaction is committed. The
timeout parameter specifies how long the connection should wait for the lock to go away
until raising an exception. The default for the timeout parameter is 5.0 fiveseconds.

If given database name does not exist then this call will create the database. You can
specify filename with required path as well if you want to create database anywhere else
except in current directory.

2 connection.cursor[cursorClass]

This routine creates a cursor which will be used throughout of your database
programming with Python. This method accepts a single optional parameter cursorClass.
If supplied, this must be a custom cursor class that extends sqlite3.Cursor.

3 cursor.executesql[, optionalparameters]

This routine executes an SQL statement. The SQL statement may be parameterized
i. e. placeholdersinsteadofSQLliterals. The sqlite3 module supports two kinds of placeholders:
question marks and named placeholders namedstyle.

For example:cursor.execute " insertintopeoplevalues(?, ?", who, age)

4 connection.executesql[, optionalparameters]

This routine is a shortcut of the above execute method provided by cursor object and it
creates an intermediate cursor object by calling the cursor method, then calls the
cursor's execute method with the parameters given.

5 cursor.executemanysql, seqofparameters

http://www.tutorialspoint.com/sqlite/sqlite_python.htm

This routine executes an SQL command against all parameter sequences or mappings
found in the sequence sql.

6 connection.executemanysql[, parameters]

This routine is a shortcut that creates an intermediate cursor object by calling the cursor
method, then calls the cursor.s executemany method with the parameters given.

7 cursor.executescriptsqlscript

This routine executes multiple SQL statements at once provided in the form of script. It
issues a COMMIT statement first, then executes the SQL script it gets as a parameter. All
the SQL statements should be separated by semi colon ; .

8 connection.executescriptsqlscript

This routine is a shortcut that creates an intermediate cursor object by calling the cursor
method, then calls the cursor's executescript method with the parameters given.

9 connection.total_changes

This routine returns the total number of database rows that have been modified, inserted,
or deleted since the database connection was opened.

10 connection.commit

This method commits the current transaction. If you don.t call this method, anything you
did since the last call to commit is not visible from other database connections.

11 connection.rollback

This method rolls back any changes to the database since the last call to commit.

12 connection.close

This method closes the database connection. Note that this does not automatically call
commit. If you just close your database connection without calling commit first, your
changes will be lost!

13 cursor.fetchone

This method fetches the next row of a query result set, returning a single sequence, or
None when no more data is available.

14 cursor.fetchmany[size = cursor. arraysize]

This routine fetches the next set of rows of a query result, returning a list. An empty list is
returned when no more rows are available. The method tries to fetch as many rows as
indicated by the size parameter.

15 cursor.fetchall

This routine fetches all remaining rows of a query result, returning a list. An empty list is
returned when no rows are available.

Connecting To Database

Following Python code shows how to connect to an existing database. If database does not exist,
then it will be created and finally a database object will be returned.

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

Here you can also supply database name as the special name :memory: to create a database in
RAM. Now, let's run above program to create our database test.db in the current directory. You
can change your path as per your requirement. Keep above code in sqlite.py file and execute it as
shown below. If database is successfully created then it will give following message:

$chmod +x sqlite.py
$./sqlite.py
Open database successfully

Create a Table
Following Python program will be used to create a table in previously created database:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')
print "Opened database successfully";

conn.execute('''CREATE TABLE COMPANY
 (ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL);''')
print "Table created successfully";

conn.close()

When above program is executed, it will create COMPANY table in your test.db and it will display
following messages:

Opened database successfully
Table created successfully

INSERT Operation
Following Python program shows how we can create records in our COMPANY table created in
above example:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')
print "Opened database successfully";

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \
 VALUES (1, 'Paul', 32, 'California', 20000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \
 VALUES (2, 'Allen', 25, 'Texas', 15000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \
 VALUES (3, 'Teddy', 23, 'Norway', 20000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \
 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00)");

conn.commit()
print "Records created successfully";
conn.close()

When above program is executed, it will create given records in COMPANY table and will display
the following two lines:

Opened database successfully
Records created successfully

SELECT Operation
Following Python program shows how we can fetch and display records from our COMPANY table
created in above example:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')
print "Opened database successfully";

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")
for row in cursor:
 print "ID = ", row[0]
 print "NAME = ", row[1]
 print "ADDRESS = ", row[2]
 print "SALARY = ", row[3], "\n"

print "Operation done successfully";
conn.close()

When above program is executed, it will produce the following result:

Opened database successfully
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 20000.0

ID = 2
NAME = Allen
ADDRESS = Texas
SALARY = 15000.0

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000.0

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000.0

Operation done successfully

UPDATE Operation
Following Python code shows how we can use UPDATE statement to update any record and then

fetch and display updated records from our COMPANY table:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')
print "Opened database successfully";

conn.execute("UPDATE COMPANY set SALARY = 25000.00 where ID=1")
conn.commit
print "Total number of rows updated :", conn.total_changes

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")
for row in cursor:
 print "ID = ", row[0]
 print "NAME = ", row[1]
 print "ADDRESS = ", row[2]
 print "SALARY = ", row[3], "\n"

print "Operation done successfully";
conn.close()

When above program is executed, it will produce the following result:

Opened database successfully
Total number of rows updated : 1
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 25000.0

ID = 2
NAME = Allen
ADDRESS = Texas
SALARY = 15000.0

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000.0

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000.0

Operation done successfully

DELETE Operation
Following Python code shows how we can use DELETE statement to delete any record and then
fetch and display remaining records from our COMPANY table:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')
print "Opened database successfully";

conn.execute("DELETE from COMPANY where ID=2;")
conn.commit
print "Total number of rows deleted :", conn.total_changes

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")
for row in cursor:

 print "ID = ", row[0]
 print "NAME = ", row[1]
 print "ADDRESS = ", row[2]
 print "SALARY = ", row[3], "\n"

print "Operation done successfully";
conn.close()

When above program is executed, it will produce the following result:

Opened database successfully
Total number of rows deleted : 1
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 20000.0

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000.0

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000.0

Operation done successfully
Processing math: 100%

