
http://www.tutorialspoint.com/sqlite/sqlite_syntax.htm Copyright © tutorialspoint.com

SQLITE - SYNTAXSQLITE - SYNTAX

SQLite is followed by unique set of rules and guidelines called Syntax. This tutorial gives you a
quick start with SQLite by listing all the basic SQLite Syntax.

Case Sensitivity
Important point to be noted is that SQLite is case insensitive, but there are some commands,
which are case sensitive like GLOB and glob have different meaning in SQLite statements.

Comments
SQLite comments are extra notes, which you can add in your SQLite code to increase its
readability and they can appear anywhere; whitespace can occur, including inside expressions
and in the middle of other SQL statements but they can not be nested.

SQL comments begin with two consecutive "-" characters ASCII0x2d and extend up to and including
the next newline character ASCII0x0a or until the end of input, whichever comes first.

You can also use C-style comments, which begin with "/*" and extend up to and including the next
"*/" character pair or until the end of input, whichever comes first. C-style comments can span
multiple lines.

sqlite>.help -- This is a single line comment

SQLite Statements
All the SQLite statements start with any of the keywords like SELECT, INSERT, UPDATE, DELETE,
ALTER, DROP, etc., and all the statements end with a semicolon ; .

SQLite ANALYZE Statement:

ANALYZE;
or
ANALYZE database_name;
or
ANALYZE database_name.table_name;

SQLite AND/OR Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE CONDITION-1 {AND|OR} CONDITION-2;

SQLite ALTER TABLE Statement:

ALTER TABLE table_name ADD COLUMN column_def...;

SQLite ALTER TABLE Statement Rename:

ALTER TABLE table_name RENAME TO new_table_name;

SQLite ATTACH DATABASE Statement:

ATTACH DATABASE 'DatabaseName' As 'Alias-Name';

SQLite BEGIN TRANSACTION Statement:

BEGIN;

http://www.tutorialspoint.com/sqlite/sqlite_syntax.htm

or
BEGIN EXCLUSIVE TRANSACTION;

SQLite BETWEEN Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE column_name BETWEEN val-1 AND val-2;

SQLite COMMIT Statement:

COMMIT;

SQLite CREATE INDEX Statement :

CREATE INDEX index_name
ON table_name (column_name COLLATE NOCASE);

SQLite CREATE UNIQUE INDEX Statement :

CREATE UNIQUE INDEX index_name
ON table_name (column1, column2,...columnN);

SQLite CREATE TABLE Statement:

CREATE TABLE table_name(
 column1 datatype,
 column2 datatype,
 column3 datatype,

 columnN datatype,
 PRIMARY KEY(one or more columns)
);

SQLite CREATE TRIGGER Statement :

CREATE TRIGGER database_name.trigger_name
BEFORE INSERT ON table_name FOR EACH ROW
BEGIN
 stmt1;
 stmt2;

END;

SQLite CREATE VIEW Statement :

CREATE VIEW database_name.view_name AS
SELECT statement....;

SQLite CREATE VIRTUAL TABLE Statement:

CREATE VIRTUAL TABLE database_name.table_name USING weblog(access.log);
or
CREATE VIRTUAL TABLE database_name.table_name USING fts3();

SQLite COMMIT TRANSACTION Statement:

COMMIT;

SQLite COUNT Clause:

SELECT COUNT(column_name)
FROM table_name
WHERE CONDITION;

SQLite DELETE Statement:

DELETE FROM table_name
WHERE {CONDITION};

SQLite DETACH DATABASE Statement:

DETACH DATABASE 'Alias-Name';

SQLite DISTINCT Clause:

SELECT DISTINCT column1, column2....columnN
FROM table_name;

SQLite DROP INDEX Statement :

DROP INDEX database_name.index_name;

SQLite DROP TABLE Statement:

DROP TABLE database_name.table_name;

SQLite DROP VIEW Statement :

DROP INDEX database_name.view_name;

SQLite DROP TRIGGER Statement :

DROP INDEX database_name.trigger_name;

SQLite EXISTS Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE column_name EXISTS (SELECT * FROM table_name);

SQLite EXPLAIN Statement :

EXPLAIN INSERT statement...;
or
EXPLAIN QUERY PLAN SELECT statement...;

SQLite GLOB Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE column_name GLOB { PATTERN };

SQLite GROUP BY Clause:

SELECT SUM(column_name)
FROM table_name
WHERE CONDITION
GROUP BY column_name;

SQLite HAVING Clause:

SELECT SUM(column_name)
FROM table_name
WHERE CONDITION
GROUP BY column_name
HAVING (arithematic function condition);

SQLite INSERT INTO Statement:

INSERT INTO table_name(column1, column2....columnN)
VALUES (value1, value2....valueN);

SQLite IN Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE column_name IN (val-1, val-2,...val-N);

SQLite Like Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE column_name LIKE { PATTERN };

SQLite NOT IN Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE column_name NOT IN (val-1, val-2,...val-N);

SQLite ORDER BY Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE CONDITION
ORDER BY column_name {ASC|DESC};

SQLite PRAGMA Statement:

PRAGMA pragma_name;

For example:

PRAGMA page_size;
PRAGMA cache_size = 1024;
PRAGMA table_info(table_name);

SQLite RELEASE SAVEPOINT Statement:

RELEASE savepoint_name;

SQLite REINDEX Statement:

REINDEX collation_name;
REINDEX database_name.index_name;
REINDEX database_name.table_name;

SQLite ROLLBACK Statement:

ROLLBACK;

or
ROLLBACK TO SAVEPOINT savepoint_name;

SQLite SAVEPOINT Statement:

SAVEPOINT savepoint_name;

SQLite SELECT Statement:

SELECT column1, column2....columnN
FROM table_name;

SQLite UPDATE Statement:

UPDATE table_name
SET column1 = value1, column2 = value2....columnN=valueN
[WHERE CONDITION];

SQLite VACUUM Statement:

VACUUM;

SQLite WHERE Clause:

SELECT column1, column2....columnN
FROM table_name
WHERE CONDITION;

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

