SQLITE - JOINS

The SQLite Joins clause is used to combine records from two or more tables in a database. A JOIN
is a means for combining fields from two tables by using values common to each.

SQL defines three major types of joins:
e The CROSS JOIN
e The INNER JOIN
e The OUTER JOIN
Before we proceed, let's consider two tables COMPANY and DEPARTMENT. We already have seen

INSERT statements to populate COMPANY table. So just let's assume the list of records available in
COMPANY table:

ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mar k 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Another table is DEPARTMENT has the following definition:

CREATE TABLE DEPARTMENT(

ID INT PRIMARY KEY NOT NULL,
DEPT CHAR(50) NOT NULL,
EMP_ID INT NOT NULL

)7
Here is the list of INSERT statements to populate DEPARTMENT table:

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)
VALUES (1, 'IT Billing', 1);

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)
VALUES (2, 'Engineering', 2);

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)
VALUES (3, 'Finance', 7);

Finally, we have the following list of records available in DEPARTMENT table:

ID DEPT EMP_ID
1 IT Billing 1
2 Engineerin 2
3 Finance 7

The CROSS JOIN

A CROSS JOIN matches every row of the first table with every row of the second table. If the input
tables have x and y columns, respectively, the resulting table will have x+y columns. Because
CROSS JOINs have the potential to generate extremely large tables, care must be taken to only use
them when appropriate.

Following is the syntax of CROSS JOIN:

http://www.tutorialspoint.com/sqlite/sqlite_using_joins.htm

SELECT ... FROM tablel CROSS JOIN table2 ...

Based on the above tables, we can write a cross join as follows:

sglite> SELECT EMP_ID, NAME, DEPT FROM COMPANY CROSS JOIN DEPARTMENT;

Above query will produce the following result:

EMP_ID NAME DEPT

1 Paul IT Billing
2 Paul Engineerin
7 Paul Finance

1 Allen IT Billing
2 Allen Engineerin
7 Allen Finance

1 Teddy IT Billing
2 Teddy Engineerin
7 Teddy Finance

1 Mar k IT Billing
2 Mar k Engineerin
7 Mar k Finance

1 David IT Billing
2 David Engineerin
7 David Finance

1 Kim IT Billing
2 Kim Engineerin
7 Kim Finance

1 James IT Billing
2 James Engineerin
7 James Finance

The INNER JOIN
A INNER JOIN creates a new result table by combining column values of two tables tablelandtable2
based upon the join-predicate. The query compares each row of tablel with each row of table2 to

find all pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied, column
values for each matched pair of rows of A and B are combined into a result row.

An INNER JOIN is the most common type of join and is the default type of join. You can use INNER
keyword optionally.

Following is the syntax of INNER JOIN:

SELECT ... FROM tablel [INNER] JOIN table2 ON conditional_expression ...

To avoid redundancy and keep the phrasing shorter, INNER JOIN conditions can be declared with a
USING expression. This expression specifies a list of one or more columns:

SELECT ... FROM tablel JOIN table2 USING (columni ,...)

A NATURAL JOIN is similar to a JOIN...USING, only it automatically tests for equality between the
values of every column that exists in both tables:

SELECT ... FROM tablel NATURAL JOIN table2...
Based on the above tables, we can write a INNER JOIN as follows:

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY INNER JOIN DEPARTMENT
ON COMPANY.ID = DEPARTMENT.EMP_ID;

Above query will produce the following result:

1 Paul IT Billing
2 Allen Engineerin
7 James Finance

The OUTER JOIN

The OUTER JOIN is an extension of the INNER JOIN. Though SQL standard defines three types of
OUTER JOINs: LEFT, RIGHT, and FULL but SQLite only supports the LEFT OUTER JOIN.

The OUTER JOINs have a condition that is identical to INNER JOINs, expressed using an ON, USING,
or NATURAL keyword. The initial results table is calculated the same way. Once the primary JOIN is
calculated, an OUTER join will take any unjoined rows from one or both tables, pad them out with
NULLs, and append them to the resulting table.

Following is the syntax of LEFT OUTER JOIN:

SELECT ... FROM tablel LEFT OUTER JOIN table2 ON conditional_expression ...

To avoid redundancy and keep the phrasing shorter, OUTER JOIN conditions can be declared with a
USING expression. This expression specifies a list of one or more columns:

SELECT ... FROM tablel LEFT OUTER JOIN table2 USING (columnl ,...) ...
Based on the above tables, we can write a inner join as follows:

sglite> SELECT EMP_ID, NAME, DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT
ON COMPANY.ID = DEPARTMENT.EMP_ID;

Above query will produce the following result:

EMP_ID NAME DEPT
1 Paul IT Billing
2 Allen Engineerin
Teddy
Mar k
David
Kim
7 James Finance

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

