
http://www.tutorialspoint.com/sqlite/sqlite_perl.htm Copyright © tutorialspoint.com

SQLITE PERL TUTORIALSQLITE PERL TUTORIAL

Installation
The SQLite3 can be integrated with Perl using Perl DBI module, which is a database access module
for the Perl programming language. It defines a set of methods, variables and conventions that
provide a standard database interface.

Here are simple steps to install DBI module on your Linux/UNIX machine:

$ wget http://search.cpan.org/CPAN/authors/id/T/TI/TIMB/DBI-1.625.tar.gz
$ tar xvfz DBI-1.625.tar.gz
$ cd DBI-1.625
$ perl Makefile.PL
$ make
$ make install

If you need to install SQLite driver for DBI, then it can be installed as follows:

$ wget http://search.cpan.org/CPAN/authors/id/M/MS/MSERGEANT/DBD-SQLite-1.11.tar.gz
$ tar xvfz DBD-SQLite-1.11.tar.gz
$ cd DBD-SQLite-1.11
$ perl Makefile.PL
$ make
$ make install

DBI Interface APIs
Following are important DBI routines which can suffice your requirement to work with SQLite
database from your Perl program. If you are looking for a more sophisticated application, then you
can look into Perl DBI official documentation.

S.N. API & Description

1
DBI->connect$datasource, "" , "" , %attr

Establishes a database connection, or session, to the requested $data_source. Returns a
database handle object if the connection succeeds.

Datasource has the form like : DBI:SQLite:dbname='test.db' SQLite is SQLite driver
name and test.db is the name of SQLite database file. If the filename is given as
':memory:', it will create an in-memory database in RAM that lasts only for the duration
of the session.

If filename is actual device file name, then it attempts to open the database file by using
its value. If no file by that name exists then a new database file by that name gets
created.

You keep second and third paramter as blank strings and last parameter is to pass
various attributes as shown below in the example.

2
dbh − > do(sql)

This routine prepares and executes a single SQL statement. Returns the number of rows
affected or undef on error. A return value of -1 means the number of rows is not known,
not applicable, or not available. Here $dbh is a handle returned by DBI->connect() call.

http://www.tutorialspoint.com/sqlite/sqlite_perl.htm

3
dbh − > prepare(sql)

This routine prepares a statement for later execution by the database engine and returns
a reference to a statement handle object.

4
$sth->execute()

This routine performs whatever processing is necessary to execute the prepared
statement. An undef is returned if an error occurs. A successful execute always returns
true regardless of the number of rows affected. Here, sthisastatementhandlereturnedbydbh-
>prepare$sql call.

5
$sth->fetchrow_array()

This routine fetches the next row of data and returns it as a list containing the field
values. Null fields are returned as undef values in the list.

6
$DBI::err

This is equivalent to h − > err, whereh is any of the handle types like dbh, sth, or $drh. This
returns native database engine error code from the last driver method called.

7
$DBI::errstr

This is equivalent to h − > errstr, whereh is any of the handle types like dbh, sth, or $drh. This
returns the native database engine error message from the last DBI method called.

8
$dbh->disconnect()

This routine closes a database connection previously opened by a call to DBI->connect.

Connecting To Database
Following Perl code shows how to connect to an existing database. If database does not exist, then
it will be created and finally a database object will be returned.

#!/usr/bin/perl

use DBI;
use strict;

my $driver = "SQLite";
my $database = "test.db";
my $dsn = "DBI:$driver:dbname=$database";
my $userid = "";
my $password = "";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
 or die $DBI::errstr;

print "Opened database successfully\n";

Now, let's run above program to create our database test.db in the current directory. You can
change your path as per your requirement. Keep above code in sqlite.pl file and execute it as
shown below. If database is successfully created, then it will give the following message:

$ chmod +x sqlite.pl
$./sqlite.pl
Open database successfully

Create a Table
Following Perl program will be used to create a table in previously created database:

#!/usr/bin/perl

use DBI;
use strict;

my $driver = "SQLite";
my $database = "test.db";
my $dsn = "DBI:$driver:dbname=$database";
my $userid = "";
my $password = "";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
 or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = qq(CREATE TABLE COMPANY
 (ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL););
my $rv = $dbh->do($stmt);
if($rv < 0){
 print $DBI::errstr;
} else {
 print "Table created successfully\n";
}
$dbh->disconnect();

When above program is executed, it will create COMPANY table in your test.db and it will display
the following messages:

Opened database successfully
Table created successfully

NOTE: in case you see following error in any of the operation:

DBD::SQLite::st execute failed: not an error(21) at dbdimp.c line 398

In this case you will have open dbdimp.c file available in DBD-SQLite installation and find out
sqlite3_prepare function and change its third argument to -1 instead of 0. Finally install
DBD::SQLite using make and do make install to resolve the problem.

INSERT Operation
Following Perl program shows how we can create records in our COMPANY table created in above
example:

#!/usr/bin/perl

use DBI;
use strict;

my $driver = "SQLite";
my $database = "test.db";
my $dsn = "DBI:$driver:dbname=$database";
my $userid = "";
my $password = "";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
 VALUES (1, 'Paul', 32, 'California', 20000.00));
my $rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
 VALUES (2, 'Allen', 25, 'Texas', 15000.00));
$rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
 VALUES (3, 'Teddy', 23, 'Norway', 20000.00));
$rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00););
$rv = $dbh->do($stmt) or die $DBI::errstr;

print "Records created successfully\n";
$dbh->disconnect();

When above program is executed, it will create given records in COMPANY table and will display
the following two lines:

Opened database successfully
Records created successfully

SELECT Operation
Following Perl program shows how we can fetch and display records from our COMPANY table
created in above example:

#!/usr/bin/perl

use DBI;
use strict;

my $driver = "SQLite";
my $database = "test.db";
my $dsn = "DBI:$driver:dbname=$database";
my $userid = "";
my $password = "";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
 or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = qq(SELECT id, name, address, salary from COMPANY;);
my $sth = $dbh->prepare($stmt);
my $rv = $sth->execute() or die $DBI::errstr;
if($rv < 0){
 print $DBI::errstr;
}
while(my @row = $sth->fetchrow_array()) {
 print "ID = ". $row[0] . "\n";
 print "NAME = ". $row[1] ."\n";
 print "ADDRESS = ". $row[2] ."\n";
 print "SALARY = ". $row[3] ."\n\n";
}
print "Operation done successfully\n";
$dbh->disconnect();

When above program is executed, it will produce the following result:

Opened database successfully
ID = 1
NAME = Paul

ADDRESS = California
SALARY = 20000

ID = 2
NAME = Allen
ADDRESS = Texas
SALARY = 15000

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000

Operation done successfully

UPDATE Operation
Following Perl code shows how we can use UPDATE statement to update any record and then fetch
and display updated records from our COMPANY table:

#!/usr/bin/perl

use DBI;
use strict;

my $driver = "SQLite";
my $database = "test.db";
my $dsn = "DBI:$driver:dbname=$database";
my $userid = "";
my $password = "";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
 or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = qq(UPDATE COMPANY set SALARY = 25000.00 where ID=1;);
my $rv = $dbh->do($stmt) or die $DBI::errstr;
if($rv < 0){
 print $DBI::errstr;
}else{
 print "Total number of rows updated : $rv\n";
}
$stmt = qq(SELECT id, name, address, salary from COMPANY;);
my $sth = $dbh->prepare($stmt);
$rv = $sth->execute() or die $DBI::errstr;
if($rv < 0){
 print $DBI::errstr;
}
while(my @row = $sth->fetchrow_array()) {
 print "ID = ". $row[0] . "\n";
 print "NAME = ". $row[1] ."\n";
 print "ADDRESS = ". $row[2] ."\n";
 print "SALARY = ". $row[3] ."\n\n";
}
print "Operation done successfully\n";
$dbh->disconnect();

When above program is executed, it will produce the following result:

Opened database successfully
Total number of rows updated : 1
ID = 1
NAME = Paul
ADDRESS = California

SALARY = 25000

ID = 2
NAME = Allen
ADDRESS = Texas
SALARY = 15000

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000

Operation done successfully

DELETE Operation
Following Perl code shows how we can use DELETE statement to delete any record and then fetch
and display remaining records from our COMPANY table:

#!/usr/bin/perl

use DBI;
use strict;

my $driver = "SQLite";
my $database = "test.db";
my $dsn = "DBI:$driver:dbname=$database";
my $userid = "";
my $password = "";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
 or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = qq(DELETE from COMPANY where ID=2;);
my $rv = $dbh->do($stmt) or die $DBI::errstr;
if($rv < 0){
 print $DBI::errstr;
}else{
 print "Total number of rows deleted : $rv\n";
}
$stmt = qq(SELECT id, name, address, salary from COMPANY;);
my $sth = $dbh->prepare($stmt);
$rv = $sth->execute() or die $DBI::errstr;
if($rv < 0){
 print $DBI::errstr;
}
while(my @row = $sth->fetchrow_array()) {
 print "ID = ". $row[0] . "\n";
 print "NAME = ". $row[1] ."\n";
 print "ADDRESS = ". $row[2] ."\n";
 print "SALARY = ". $row[3] ."\n\n";
}
print "Operation done successfully\n";
$dbh->disconnect();

When above program is executed, it will produce the following result:

Opened database successfully
Total number of rows deleted : 1
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 25000

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000

Operation done successfully
Processing math: 100%

