SQLITE - INJECTION

If you take user input through a webpage and insert it into a SQLite database there's a chance that
you have left yourself wide open for a security issue known as SQL Injection. This lesson will teach
you how to help prevent this from happening and help you secure your scripts and SQLite
statements.

Injection usually occurs when you ask a user for input, like their name, and instead of a name they
give you a SQLite statement that you will unknowingly run on your database.

Never trust user provided data, process this data only after validation; as a rule, this is done by
pattern matching. In the example below, the username is restricted to alphanumerical chars plus
underscore and to a length between 8 and 20 chars - modify these rules as needed.

if (preg_match("/Mw{8,20}$/", $_GET['username'], $matches)){

$db = new SQLiteDatabase('filename');

$result = @$db->query("SELECT * FROM users WHERE username=$matches[0]");
telse{

echo "username not accepted";
}

To demonstrate the problem, consider this excerpt:

$name = "Qadir'; DELETE FROM users;";
@$db->query("SELECT * FROM users WHERE username='{$name}'");

The function call is supposed to retrieve a record from the users table where the name column
matches the name specified by the user. Under normal circumstances, $name would only contain
alphanumeric characters and perhaps spaces, such as the string ilia. But here, by appending an
entirely new query to $name, the call to the database turns into disaster: the injected DELETE
query removes all records from users.

There are databases interfaces which do not permit query stacking or executing multiple queries
in a single function call. If you try to stack queries, the call fails but SQLite and PostgreSQL, happily
perform stacked queries, executing all of the queries provided in one string and creating a serious
security problem.

Preventing SQL Injection:

You can handle all escape characters smartly in scripting languages like PERL and PHP.
Programming language PHP provides the function string sqlite_escape_string to escape input
characters that are special to SQLite.

if (get_magic_quotes_gpc())

$name = sqglite_escape_string($name);

}
$result = @$db->query("SELECT * FROM users WHERE username='{$name}'");

Although the encoding makes it safe to insert the data, it will render simple text comparisons and
LIKE clauses in your queries unusable for the columns that contain the binary data.

Keep a note that addslashes should NOT be used to quote your strings for SQLite queries; it will

laad tn ctranna roaciilte wihan ratrioaviinn vinir Aata

Loading [MathjJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

http://www.tutorialspoint.com/sqlite/sqlite_injection.htm

