
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

Chapter 7: Relational Database Design!

©Silberschatz, Korth and Sudarshan!7.2!Database System Concepts!

Chapter 7: Relational Database Design!

■  First Normal Form"
■  Pitfalls in Relational Database Design"
■  Functional Dependencies"
■  Decomposition"
■  Boyce-Codd Normal Form"
■  Third Normal Form"
■  Multivalued Dependencies and Fourth Normal Form"
■  Overall Database Design Process"

©Silberschatz, Korth and Sudarshan!7.3!Database System Concepts!

First Normal Form!

■  Domain is atomic if its elements are considered to be indivisible
units"
★  Examples of non-atomic domains:"

✔ Set of names, composite attributes"
✔  Identification numbers like CS101 that can be broken up into

parts"

■  A relational schema R is in first normal form if the domains of all
attributes of R are atomic"

■  Non-atomic values complicate storage and encourage redundant
(repeated) storage of data"
★  E.g. Set of accounts stored with each customer, and set of owners

stored with each account"
★  We assume all relations are in first normal form (revisit this in

Chapter 9 on Object Relational Databases)"

©Silberschatz, Korth and Sudarshan!7.4!Database System Concepts!

First Normal Form (Contd.)!
■  Atomicity is actually a property of how the elements of the

domain are used."
★  E.g. Strings would normally be considered indivisible "
★  Suppose that students are given roll numbers which are strings "of

the form CS0012 or EE1127!
★  If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic."
★  Doing so is a bad idea: leads to encoding of information in

application program rather than in the database."

©Silberschatz, Korth and Sudarshan!7.5!Database System Concepts!

Pitfalls in Relational Database Design!

■  Relational database design requires that we find a
“good” collection of relation schemas. A bad design
may lead to "
★  Repetition of Information."
★  Inability to represent certain information."

■  Design Goals:"
★  Avoid redundant data"
★  Ensure that relationships among attributes are

represented "
★  Facilitate the checking of updates for violation of

database integrity constraints."

©Silberschatz, Korth and Sudarshan!7.6!Database System Concepts!

Example!
■  Consider the relation schema: 

 " Lending-schema = (branch-name, branch-city, assets,  
! ! customer-name, loan-number, amount)!

!
!
"
"
"
"
■  Redundancy:"

★  Data for branch-name, branch-city, assets are repeated for each loan that a
branch makes"

★  Wastes space "
★  Complicates updating, introducing possibility of inconsistency of assets value"

■  Null values"
★  Cannot store information about a branch if no loans exist "
★  Can use null values, but they are difficult to handle."

©Silberschatz, Korth and Sudarshan!7.7!Database System Concepts!

Decomposition!

■  Decompose the relation schema Lending-schema into:"
Branch-schema = (branch-name, branch-city,assets)!
Loan-info-schema = (customer-name, loan-number, 

 branch-name, amount)!
■  All attributes of an original schema (R) must appear in

the decomposition (R1, R2):!
" "R = R1 ∪ R2"

■  Lossless-join decomposition. 
For all possible relations r on schema R!
""r = ∏R1 (r) ∏R2 (r) "

©Silberschatz, Korth and Sudarshan!7.8!Database System Concepts!

Example of Non Lossless-Join Decomposition !

■  Decomposition of R = (A, B) 
!R1 = (A) !R2 = (B)"

A! B!

α!
α!
β!

1"
2"
1!

A!

α!
β!

B!

1"
2"

r!
∏A(r)" ∏B(r)"

∏A (r) ∏B (r) A! B!

α!
α!
β!
β!

1"
2"
1"
2!

©Silberschatz, Korth and Sudarshan!7.9!Database System Concepts!

Goal — Devise a Theory for the Following!

■  Decide whether a particular relation R is in “good” form."
■  In the case that a relation R is not in “good” form, decompose it

into a set of relations {R1, R2, ..., Rn} such that "
★  each relation is in good form "
★  the decomposition is a lossless-join decomposition"

■  Our theory is based on:"
★  functional dependencies"
★  multivalued dependencies"

©Silberschatz, Korth and Sudarshan!7.10!Database System Concepts!

Functional Dependencies!

■  Constraints on the set of legal relations."
■  Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes."
■  A functional dependency is a generalization of the notion of a

key."

©Silberschatz, Korth and Sudarshan!7.11!Database System Concepts!

Functional Dependencies (Cont.)!

■  Let R be a relation schema"
" "α ⊆ R and β ⊆ R!

■  The functional dependency"
! ! α → β 
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes α, they also agree
on the attributes β. That is, "
! ! t1[α] = t2 [α] ⇒ t1[β] = t2 [β] "

■  Example: Consider r(A,B) with the following instance of r."

■  On this instance, A → B does NOT hold, but B → A does hold. "

1  4"
1 5"
3 "7"

©Silberschatz, Korth and Sudarshan!7.12!Database System Concepts!

Functional Dependencies (Cont.)!

■  K is a superkey for relation schema R if and only if K → R"
■  K is a candidate key for R if and only if "

★  K → R, and"
★  for no α ⊂ K, α → R!

■  Functional dependencies allow us to express constraints that
cannot be expressed using superkeys. Consider the schema:"
" "Loan-info-schema = (customer-name, loan-number, 

! ! ! branch-name, amount).!
!We expect this set of functional dependencies to hold:"
" " "loan-number → amount 

! !loan-number → branch-name!
!but would not expect the following to hold: "
" " "loan-number → customer-name!

!

©Silberschatz, Korth and Sudarshan!7.13!Database System Concepts!

Use of Functional Dependencies!

■  We use functional dependencies to:"
★  test relations to see if they are legal under a given set of functional

dependencies. "
✔  If a relation r is legal under a set F of functional dependencies, we

say that r satisfies F."
★  specify constraints on the set of legal relations"

✔ We say that F holds on R if all legal relations on R satisfy the set of
functional dependencies F.!

■  Note: A specific instance of a relation schema may satisfy a
functional dependency even if the functional dependency does not
hold on all legal instances. "
★  For example, a specific instance of Loan-schema may, by chance,

satisfy  
 loan-number → customer-name.!

©Silberschatz, Korth and Sudarshan!7.14!Database System Concepts!

Functional Dependencies (Cont.)!

■  A functional dependency is trivial if it is satisfied by all instances
of a relation"
★  E.g.!

✔  customer-name, loan-number → customer-name!
✔  customer-name → customer-name!

★  In general, α → β is trivial if β ⊆ α  
 !

©Silberschatz, Korth and Sudarshan!7.15!Database System Concepts!

Closure of a Set of Functional
Dependencies!

■  Given a set F set of functional dependencies, there are certain
other functional dependencies that are logically implied by F."
★  E.g. If A → B and B → C, then we can infer that A → C"

■  The set of all functional dependencies logically implied by F is the
closure of F."

■  We denote the closure of F by F+.!
■  We can find all of F+ by applying Armstrong’s Axioms:"

★  if β ⊆ α, then α → β (reflexivity)"
★  if α → β, then γ α → γ β (augmentation)"
★  if α → β, and β → γ, then α → γ (transitivity)!

■  These rules are "
★  sound (generate only functional dependencies that actually hold) and "
★  complete (generate all functional dependencies that hold)."

©Silberschatz, Korth and Sudarshan!7.16!Database System Concepts!

Example!
■  R = (A, B, C, G, H, I) 

F = { A → B 
! A → C  
!CG → H  
!CG → I 
! B → H}"

■  some members of F+"
★  A → H !

✔ by transitivity from A → B and B → H!
★  AG → I "

✔ by augmenting A → C with G, to get AG → CG  
 and then transitivity with CG → I !

★  CG → HI "
✔  from CG → H and CG → I : “union rule” can be inferred from"

–  definition of functional dependencies, or "
–  Augmentation of CG → I to infer CG → CGI, augmentation of 

CG → H to infer CGI → HI, and then transitivity"

©Silberschatz, Korth and Sudarshan!7.17!Database System Concepts!

Procedure for Computing F+!

■  To compute the closure of a set of functional dependencies F: 
!

 F+ = F 
repeat 

"for each functional dependency f in F+ 

" apply reflexivity and augmentation rules on f 
! add the resulting functional dependencies to F+ 

"for each pair of functional dependencies f1and f2 in F+ 

" if f1 and f2 can be combined using transitivity 
" " then add the resulting functional dependency to F+ 

until F+ does not change any further"
"
NOTE: We will see an alternative procedure for this task later!
"

©Silberschatz, Korth and Sudarshan!7.18!Database System Concepts!

Closure of Functional Dependencies
(Cont.)!

■  We can further simplify manual computation of F+ by using
the following additional rules."
★  If α → β holds and α → γ holds, then α → β γ holds (union)"
★  If α → β γ holds, then α → β holds and α → γ holds

(decomposition)"
★  If α → β holds and γ β → δ holds, then α γ → δ holds

(pseudotransitivity)"
The above rules can be inferred from Armstrong’s axioms."

©Silberschatz, Korth and Sudarshan!7.19!Database System Concepts!

Closure of Attribute Sets!

■  Given a set of attributes α, define the closure of α under F
(denoted by α+) as the set of attributes that are functionally
determined by α under F: 

" " α → β is in F+ ➳ β ⊆ α+"
■  Algorithm to compute α+, the closure of α under F 

!result := α; 
"while (changes to result) do 
! !for each β → γ in F do 
! ! !begin 
! ! ! !if β ⊆ result then result := result ∪ γ  
" " "end!

©Silberschatz, Korth and Sudarshan!7.20!Database System Concepts!

Example of Attribute Set Closure!
■  R = (A, B, C, G, H, I)!
■  F = {A → B 

!A → C  
!CG → H  
!CG → I 
!B → H}"

■  (AG)+"
1. "result = AG"
2. "result = ABCG !(A → C and A → B)"
3. "result = ABCGH !(CG → H and CG ⊆ AGBC)!
4. "result = ABCGHI !(CG → I and CG ⊆ AGBCH)!

■  Is AG a candidate key? "
1.  Is AG a super key?"

1.  Does AG → R? == Is (AG)+ ⊆ R!
2.  Is any subset of AG a superkey?"

1.  Does A → R? == Is (A)+ ⊆ R"
2.  Does G → R? == Is (G)+ ⊆ R"

©Silberschatz, Korth and Sudarshan!7.21!Database System Concepts!

Uses of Attribute Closure!
There are several uses of the attribute closure algorithm:"
■  Testing for superkey:"

★  To test if α is a superkey, we compute α+, and check if α+ contains
all attributes of R."

■  Testing functional dependencies"
★  To check if a functional dependency α → β holds (or, in other words,

is in F+), just check if β ⊆ α+. "
★  That is, we compute α+ by using attribute closure, and then check if

it contains β. "
★  Is a simple and cheap test, and very useful"

■  Computing closure of F"
★  For each γ ⊆ R, we find the closure γ+, and for each S ⊆ γ+, we

output a functional dependency γ → S."

©Silberschatz, Korth and Sudarshan!7.22!Database System Concepts!

Canonical Cover!

■  Sets of functional dependencies may have redundant
dependencies that can be inferred from the others"
★  Eg: A → C is redundant in: {A → B, B → C, A → C}"
★  Parts of a functional dependency may be redundant"

✔ E.g. on RHS: {A → B, B → C, A → CD} can be simplified to  
 {A → B, B → C, A → D} "

✔ E.g. on LHS: {A → B, B → C, AC → D} can be simplified to  
 {A → B, B → C, A → D} "

■  Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant
dependencies or redundant parts of dependencies "

©Silberschatz, Korth and Sudarshan!7.23!Database System Concepts!

Extraneous Attributes!
■  Consider a set F of functional dependencies and the functional

dependency α → β in F."
★  Attribute A is extraneous in α if A ∈ α  

 and F logically implies (F – {α → β}) ∪ {(α – A) → β}."
★  Attribute A is extraneous in β if A ∈ β  

 and the set of functional dependencies  
 (F – {α → β}) ∪ {α →(β – A)} logically implies F.!

■  Note: implication in the opposite direction is trivial in each of
the cases above, since a “stronger” functional dependency
always implies a weaker one"

■  Example: Given F = {A → C, AB → C }"
★  B is extraneous in AB → C because {A → C, AB → C} logically

implies A → C (I.e. the result of dropping B from AB → C)."
■  Example: Given F = {A → C, AB → CD}!

★  C is extraneous in AB → CD since AB → C can be inferred even
after deleting C!

©Silberschatz, Korth and Sudarshan!7.24!Database System Concepts!

Testing if an Attribute is Extraneous!

■  Consider a set F of functional dependencies and the functional
dependency α → β in F."

■  To test if attribute A ∈ α is extraneous in α "
1.  compute ({α} – A)+ using the dependencies in F "
2.  check that ({α} – A)+ contains A; if it does, A is extraneous"

■  To test if attribute A ∈ β is extraneous in β "
1.  compute α+ using only the dependencies in  

 F’ = (F – {α → β}) ∪ {α →(β – A)}, "
2.  check that α+ contains A; if it does, A is extraneous"

©Silberschatz, Korth and Sudarshan!7.25!Database System Concepts!

Canonical Cover!

■  A canonical cover for F is a set of dependencies Fc such that "
★  F logically implies all dependencies in Fc, and "
★  Fc logically implies all dependencies in F, and"
★  No functional dependency in Fc contains an extraneous attribute, and"
★  Each left side of functional dependency in Fc is unique."

■  To compute a canonical cover for F: 
repeat 

!Use the union rule to replace any dependencies in F 
! ! α1 → β1 and α1 → β2 with α1 → β1 β2  
"Find a functional dependency α → β with an  
" "extraneous attribute either in α or in β  
"If an extraneous attribute is found, delete it from α → β  

until F does not change"
■  Note: Union rule may become applicable after some extraneous

attributes have been deleted, so it has to be re-applied"

©Silberschatz, Korth and Sudarshan!7.26!Database System Concepts!

Example of Computing a Canonical Cover!

■  R = (A, B, C) 
F = {A → BC  
! B → C  
! A → B 
"AB → C}"

■  Combine A → BC and A → B into A → BC!
★  Set is now {A → BC, B → C, AB → C}"

■  A is extraneous in AB → C!
★  Check if the result of deleting A from AB → C is implied by the other

dependencies"
✔  Yes: in fact, B → C is already present!"

★  Set is now {A → BC, B → C}!
■  C is extraneous in A → BC "

★  Check if A → C is logically implied by A → B and the other dependencies"
✔  Yes: using transitivity on A → B and B → C. "

–  Can use attribute closure of A in more complex cases"
■  The canonical cover is: "A → B 

! !B → C!

©Silberschatz, Korth and Sudarshan!7.27!Database System Concepts!

Goals of Normalization!

■  Decide whether a particular relation R is in “good” form."
■  In the case that a relation R is not in “good” form, decompose it

into a set of relations {R1, R2, ..., Rn} such that "
★  each relation is in good form "
★  the decomposition is a lossless-join decomposition"

■  Our theory is based on:"
★  functional dependencies"
★  multivalued dependencies"

©Silberschatz, Korth and Sudarshan!7.28!Database System Concepts!

Decomposition!

■  Decompose the relation schema Lending-schema into:"
Branch-schema = (branch-name, branch-city,assets)!
Loan-info-schema = (customer-name, loan-number, 

 branch-name, amount)!
■  All attributes of an original schema (R) must appear in the

decomposition (R1, R2):!
" "R = R1 ∪ R2"

■  Lossless-join decomposition. 
For all possible relations r on schema R!
" "r = ∏R1 (r) ∏R2 (r) "

■  A decomposition of R into R1 and R2 is lossless join if and only if
at least one of the following dependencies is in F+:"
★  R1 ∩ R2 → R1"

★  R1 ∩ R2 → R2"
"

©Silberschatz, Korth and Sudarshan!7.29!Database System Concepts!

Example of Lossy-Join Decomposition !

■  Lossy-join decompositions result in information loss."
■  Example: Decomposition of R = (A, B) 

!R1 = (A) !R2 = (B)!

A! B!

α!
α!
β!

1"
2"
1!

A!

α!
β!

B!

1"
2"

r!
∏A(r)" ∏B(r)"

∏A (r) ∏B (r) A! B!

α!
α!
β!
β!

1"
2"
1"
2!

©Silberschatz, Korth and Sudarshan!7.30!Database System Concepts!

Normalization Using Functional Dependencies!

■  When we decompose a relation schema R with a set of
functional dependencies F into R1, R2,.., Rn we want"
★  Lossless-join decomposition: Otherwise decomposition would result in

information loss."
★  No redundancy: The relations Ri preferably should be in either Boyce-

Codd Normal Form or Third Normal Form."
★  Dependency preservation: Let Fi be the set of dependencies F+ that

include only attributes in Ri. !
✔  Preferably the decomposition should be dependency preserving,

that is, (F1 ∪ F2 ∪ … ∪ Fn)+ = F+!

✔ Otherwise, checking updates for violation of functional
dependencies may require computing joins, which is expensive."

©Silberschatz, Korth and Sudarshan!7.31!Database System Concepts!

Example!

■  R = (A, B, C) 
F = {A → B, B → C)!
★  Can be decomposed in two different ways"

■  R1 = (A, B), R2 = (B, C)!
★  Lossless-join decomposition:"
" " R1 ∩ R2 = {B} and B → BC!

★  Dependency preserving"

■  R1 = (A, B), R2 = (A, C)!
★  Lossless-join decomposition:"
" " R1 ∩ R2 = {A} and A → AB!

★  Not dependency preserving  
(cannot check B → C without computing R1 R2)"

©Silberschatz, Korth and Sudarshan!7.32!Database System Concepts!

Testing for Dependency Preservation!

■  To check if a dependency α→β is preserved in a decomposition of
R into R1, R2, …, Rn we apply the following simplified test (with
attribute closure done w.r.t. F)"
★  result = α 

while (changes to result) do  
"for each Ri in the decomposition  
" "t = (result ∩ Ri)+ ∩ Ri  
! !result = result ∪ t!

★  If result contains all attributes in β, then the functional dependency  
α → β is preserved."

■  We apply the test on all dependencies in F to check if a
decomposition is dependency preserving"

■  This procedure takes polynomial time, instead of the exponential
time required to compute F+ and (F1 ∪ F2 ∪ … ∪ Fn)+ "

©Silberschatz, Korth and Sudarshan!7.33!Database System Concepts!

Boyce-Codd Normal Form!

■  α! → β is trivial (i.e., β ⊆ α)"
■  α is a superkey for R!

A relation schema R is in BCNF with respect to a set F of functional "
dependencies if for all functional dependencies in F+ of the form "
α!→ β, where α ⊆ R and β ⊆ R, at least one of the following holds:"

©Silberschatz, Korth and Sudarshan!7.34!Database System Concepts!

Example!

■  R = (A, B, C) 
F = {A → B 

!B → C} 
Key = {A}"

■  R is not in BCNF"
■  Decomposition R1 = (A, B), R2 = (B, C)!

★  R1 and R2 in BCNF"
★  Lossless-join decomposition"
★  Dependency preserving"

©Silberschatz, Korth and Sudarshan!7.35!Database System Concepts!

Testing for BCNF!

■  To check if a non-trivial dependency α!→β causes a violation of
BCNF"
1. compute α+ (the attribute closure of α), and "
2. verify that it includes all attributes of R, that is, it is a superkey of R."

■  Simplified test: To check if a relation schema R is in BCNF, it
suffices to check only the dependencies in the given set F for
violation of BCNF, rather than checking all dependencies in F+."
★  If none of the dependencies in F causes a violation of BCNF, then

none of the dependencies in F+ will cause a violation of BCNF either."
■  However, using only F is incorrect when testing a relation in a

decomposition of R"
★  E.g. Consider R (A, B, C, D), with F = { A →B, B →C}"

✔ Decompose R into R1(A,B) and R2(A,C,D) "
✔ Neither of the dependencies in F contain only attributes from 

 (A,C,D) so we might be mislead into thinking R2 satisfies BCNF. "
✔  In fact, dependency A → C in F+ shows R2 is not in BCNF. "

©Silberschatz, Korth and Sudarshan!7.36!Database System Concepts!

BCNF Decomposition Algorithm!

!result := {R}; 
done := false; 
compute F+; 
while (not done) do 
!if (there is a schema Ri in result that is not in BCNF) 
" "then begin 
! ! !let α! → β be a nontrivial functional  
" " " "dependency that holds on Ri  
! ! ! !such that α! → Ri is not in F+,  
" " " "and α ∩ β = ∅; 
" " " result := (result – Ri) ∪ (Ri – β) ∪ (α, β); 
! !end  
! !else done := true;!

Note: each Ri is in BCNF, and decomposition is lossless-join."

©Silberschatz, Korth and Sudarshan!7.37!Database System Concepts!

Example of BCNF Decomposition!

■  R = (branch-name, branch-city, assets,!
!!customer-name, loan-number, amount)!
!F = {branch-name → assets branch-city!
!loan-number → amount branch-name}!
"Key = {loan-number, customer-name}!

■  Decomposition"
★  R1 = (branch-name, branch-city, assets)!
★  R2 = (branch-name, customer-name, loan-number, amount)!
★  R3 = (branch-name, loan-number, amount)!
★  R4 = (customer-name, loan-number)!

■  Final decomposition  
" "R1, R3, R4"

©Silberschatz, Korth and Sudarshan!7.38!Database System Concepts!

Testing Decomposition for BCNF!

■  To check if a relation Ri in a decomposition of R is in BCNF, "
★  Either test Ri for BCNF with respect to the restriction of F to Ri (that

is, all FDs in F+ that contain only attributes from Ri)"
★  or use the original set of dependencies F that hold on R, but with the

following test:"
–  for every set of attributes α ⊆ Ri, check that α+ (the attribute

closure of α) either includes no attribute of Ri- α, or includes all
attributes of Ri."

✔  If the condition is violated by some α!→ β in F, the dependency 
 α!→ (α+ - α!) ∩ Ri

 

can be shown to hold on Ri, and Ri violates BCNF."
✔ We use above dependency to decompose Ri!

©Silberschatz, Korth and Sudarshan!7.39!Database System Concepts!

BCNF and Dependency Preservation!

■  R = (J, K, L) 
F = {JK → L  

!L → K} 
Two candidate keys = JK and JL!

■  R is not in BCNF"
■  Any decomposition of R will fail to preserve  

" ""
" " "JK → L"

It is not always possible to get a BCNF decomposition that is "
dependency preserving"

©Silberschatz, Korth and Sudarshan!7.40!Database System Concepts!

Third Normal Form: Motivation!

■  There are some situations where "
★  BCNF is not dependency preserving, and "
★  efficient checking for FD violation on updates is important"

■  Solution: define a weaker normal form, called Third Normal Form."
★  Allows some redundancy (with resultant problems; we will see

examples later)"
★  But FDs can be checked on individual relations without computing a

join."
★  There is always a lossless-join, dependency-preserving decomposition

into 3NF."

©Silberschatz, Korth and Sudarshan!7.41!Database System Concepts!

Third Normal Form!

■  A relation schema R is in third normal form (3NF) if for all:"
" "α → β in F+ 
at least one of the following holds:"
★  α → β is trivial (i.e., β ∈ α)"
★  α is a superkey for R"
★  Each attribute A in β – α is contained in a candidate key for R.!
 (NOTE: each attribute may be in a different candidate key)!

■  If a relation is in BCNF it is in 3NF (since in BCNF one of the first
two conditions above must hold)."

■  Third condition is a minimal relaxation of BCNF to ensure
dependency preservation (will see why later)."

©Silberschatz, Korth and Sudarshan!7.42!Database System Concepts!

3NF (Cont.)!

■  Example"
★  R = (J, K, L) 

F = {JK → L, L → K}"
★  Two candidate keys: JK and JL!
★  R is in 3NF"
" "JK → L !JK is a superkey 

"L → K !K is contained in a candidate key"
■  BCNF decomposition has (JL) and (LK)"

■  Testing for JK → L requires a join"

■  There is some redundancy in this schema"
■  Equivalent to example in book:"

 Banker-schema = (branch-name, customer-name, banker-name)"
"banker-name → branch name"
"branch name customer-name → banker-name"

"

©Silberschatz, Korth and Sudarshan!7.43!Database System Concepts!

Testing for 3NF!

■  Optimization: Need to check only FDs in F, need not check all
FDs in F+."

■  Use attribute closure to check for each dependency α → β, if α is
a superkey."

■  If α is not a superkey, we have to verify if each attribute in β is
contained in a candidate key of R!
★  this test is rather more expensive, since it involve finding candidate

keys"
★  testing for 3NF has been shown to be NP-hard"
★  Interestingly, decomposition into third normal form (described

shortly) can be done in polynomial time "

©Silberschatz, Korth and Sudarshan!7.44!Database System Concepts!

3NF Decomposition Algorithm!
"Let Fc be a canonical cover for F; 
i := 0; 
for each functional dependency α → β in Fc do 
!if none of the schemas Rj, 1 ≤ j ≤ i contains α β  
" "then begin 
! ! ! !i := i + 1;  
" " " "Ri := α β  
! ! !end  
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key for R  
!then begin 
! ! !i := i + 1; 
" " "Ri := any candidate key for R;  
! !end  
return (R1, R2, ..., Ri) ! ! !

©Silberschatz, Korth and Sudarshan!7.45!Database System Concepts!

3NF Decomposition Algorithm (Cont.)!

■  Above algorithm ensures:"
★  each relation schema Ri is in 3NF"
★  decomposition is dependency preserving and lossless-join"
★  Proof of correctness is at end of this file (click here)"

©Silberschatz, Korth and Sudarshan!7.46!Database System Concepts!

Example!

■  Relation schema:"
"Banker-info-schema = (branch-name, customer-name, 
! ! !banker-name, office-number)!

■  The functional dependencies for this relation schema are: 
"banker-name → branch-name office-number 
!customer-name branch-name → banker-name!

■  The key is:"
" ""{customer-name, branch-name}"

!

©Silberschatz, Korth and Sudarshan!7.47!Database System Concepts!

Applying 3NF to Banker-info-schema!

■  The for loop in the algorithm causes us to include the
following schemas in our decomposition:"
" "Banker-office-schema = (banker-name, branch-name,  

! ! ! !office-number) 
!Banker-schema = (customer-name, branch-name, 
! ! banker-name) 

"
■  Since Banker-schema contains a candidate key for  

Banker-info-schema, we are done with the decomposition
process.!

©Silberschatz, Korth and Sudarshan!7.48!Database System Concepts!

Comparison of BCNF and 3NF!

■  It is always possible to decompose a relation into relations in
3NF and "
★  the decomposition is lossless"
★  the dependencies are preserved"

■  It is always possible to decompose a relation into relations in
BCNF and "
★  the decomposition is lossless"
★  it may not be possible to preserve dependencies."

©Silberschatz, Korth and Sudarshan!7.49!Database System Concepts!

Comparison of BCNF and 3NF (Cont.)!

J!
j1""
j2"
"j3"!

null!

L!

l1"
"l1"
"l1"!
l2"

K!

k1"
"k1"
"k1"!
k2"

A schema that is in 3NF but not in BCNF has the problems of "
■  repetition of information (e.g., the relationship l1, k1) "
■  need to use null values (e.g., to represent the relationship  

 l2, k2 where there is no corresponding value for J)."

■  Example of problems due to redundancy in 3NF"
★  R = (J, K, L) 

F = {JK → L, L → K}"

©Silberschatz, Korth and Sudarshan!7.50!Database System Concepts!

Design Goals!

■  Goal for a relational database design is:"
★  BCNF."
★  Lossless join."
★  Dependency preservation."

■  If we cannot achieve this, we accept one of"
★  Lack of dependency preservation "
★  Redundancy due to use of 3NF"

■  Interestingly, SQL does not provide a direct way of specifying
functional dependencies other than superkeys."
"Can specify FDs using assertions, but they are expensive to test"

■  Even if we had a dependency preserving decomposition, using
SQL we would not be able to efficiently test a functional
dependency whose left hand side is not a key."

©Silberschatz, Korth and Sudarshan!7.51!Database System Concepts!

Testing for FDs Across Relations!

■  If decomposition is not dependency preserving, we can have an extra
materialized view for each dependency α →β in Fc that is not preserved
in the decomposition"

■  The materialized view is defined as a projection on α β of the join of the
relations in the decomposition"

■  Many newer database systems support materialized views and database
system maintains the view when the relations are updated."
★  No extra coding effort for programmer."

■  The functional dependency α → β is expressed by declaring α as a
candidate key on the materialized view."

■  Checking for candidate key cheaper than checking α → β "
■  BUT:"

★  Space overhead: for storing the materialized view"
★  Time overhead: Need to keep materialized view up to date when  

relations are updated"
★  Database system may not support key declarations on  

materialized views"

©Silberschatz, Korth and Sudarshan!7.52!Database System Concepts!

Multivalued Dependencies!

■  There are database schemas in BCNF that do not seem to be
sufficiently normalized "

■  Consider a database "
" "classes(course, teacher, book) 
such that (c,t,b) ∈ classes means that t is qualified to teach c,
and b is a required textbook for c"

■  The database is supposed to list for each course the set of
teachers any one of which can be the course’s instructor, and
the set of books, all of which are required for the course (no
matter who teaches it)."

©Silberschatz, Korth and Sudarshan!7.53!Database System Concepts!

■  There are no non-trivial functional dependencies and therefore
the relation is in BCNF "

■  Insertion anomalies – i.e., if Sara is a new teacher that can teach
database, two tuples need to be inserted"
" "(database, Sara, DB Concepts) 

"(database, Sara, Ullman)"

course! teacher! book!
database"
database"
database"
database"
database"
database"
operating systems"
operating systems"
operating systems"
operating systems"

Avi"
Avi"
Hank"
Hank"
Sudarshan"
Sudarshan"
Avi"
Avi "
Jim "
Jim "

DB Concepts"
Ullman"
DB Concepts"
Ullman"
DB Concepts"
Ullman"
OS Concepts"
Shaw"
OS Concepts"
Shaw"

classes"

Multivalued Dependencies (Cont.)!

©Silberschatz, Korth and Sudarshan!7.54!Database System Concepts!

■  Therefore, it is better to decompose classes into:"

course! teacher!
database"
database"
database"
operating systems"
operating systems"

Avi"
Hank"
Sudarshan"
Avi "
Jim"

teaches!
course! book!

database"
database"
operating systems"
operating systems"

DB Concepts"
Ullman"
OS Concepts"
Shaw"

text!
We shall see that these two relations are in Fourth Normal
Form (4NF)"

Multivalued Dependencies (Cont.)!

©Silberschatz, Korth and Sudarshan!7.55!Database System Concepts!

Multivalued Dependencies (MVDs)!

■  Let R be a relation schema and let α ⊆ R and β ⊆ R.
The multivalued dependency "
" " "α →→ β!
!holds on R if in any legal relation r(R), for all pairs for
tuples t1 and t2 in r such that t1[α] = t2 [α], there exist
tuples t3 and t4 in r such that: "
" " t1[α] = t2 [α] = t3 [α] = t4 [α]  

" t3[β] = t1 [β]  
" t3[R – β] = t2[R – β]  
" t4 [β] = t2[β]  
" t4[R – β] = t1[R – β]  

"

©Silberschatz, Korth and Sudarshan!7.56!Database System Concepts!

MVD (Cont.)!

■  Tabular representation of α →→ β"

©Silberschatz, Korth and Sudarshan!7.57!Database System Concepts!

Example!

■  Let R be a relation schema with a set of attributes that are
partitioned into 3 nonempty subsets."
" " "Y, Z, W!

■  We say that Y →→ Z (Y multidetermines Z) 
if and only if for all possible relations r(R)!
" "< y1, z1, w1 > ∈ r and < y2, z2, w2 > ∈ r"
"then"
" "< y1, z1, w2 > ∈ r and < y2, z2, w1 > ∈ r!

■  Note that since the behavior of Z and W are identical it follows
that Y →→ Z if Y →→ W "

"

©Silberschatz, Korth and Sudarshan!7.58!Database System Concepts!

Example (Cont.)!

■  In our example:"
" "course →→ teacher " 

"course →→ book!
■  The above formal definition is supposed to formalize the

notion that given a particular value of Y (course) it has
associated with it a set of values of Z (teacher) and a set
of values of W (book), and these two sets are in some
sense independent of each other."

■  Note: "
★  If Y → Z then Y →→ Z"
★  Indeed we have (in above notation) Z1 = Z2  

The claim follows."

©Silberschatz, Korth and Sudarshan!7.59!Database System Concepts!

Use of Multivalued Dependencies!

■  We use multivalued dependencies in two ways: "
1. "To test relations to determine whether they are legal under a

given set of functional and multivalued dependencies"
2. "To specify constraints on the set of legal relations. We shall

thus concern ourselves only with relations that satisfy a given
set of functional and multivalued dependencies."

■  If a relation r fails to satisfy a given multivalued
dependency, we can construct a relations rʹ that does
satisfy the multivalued dependency by adding tuples to r. "
" ""

©Silberschatz, Korth and Sudarshan!7.60!Database System Concepts!

Theory of MVDs!

■  From the definition of multivalued dependency, we can derive
the following rule:"
★  If α → β, then α →→ β"

"That is, every functional dependency is also a multivalued
dependency"

■  The closure D+ of D is the set of all functional and multivalued
dependencies logically implied by D. "
★  We can compute D+ from D, using the formal definitions of functional

dependencies and multivalued dependencies."
★  We can manage with such reasoning for very simple multivalued

dependencies, which seem to be most common in practice"
★  For complex dependencies, it is better to reason about sets of

dependencies using a system of inference rules (see Appendix C)."

©Silberschatz, Korth and Sudarshan!7.61!Database System Concepts!

Fourth Normal Form!

■  A relation schema R is in 4NF with respect to a set D of
functional and multivalued dependencies if for all multivalued
dependencies in D+ of the form α →→ β, where α ⊆ R and β ⊆ R,
at least one of the following hold:"
★  α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)!
★  α is a superkey for schema R!

■  If a relation is in 4NF it is in BCNF"

©Silberschatz, Korth and Sudarshan!7.62!Database System Concepts!

Restriction of Multivalued Dependencies!

■  The restriction of D to Ri is the set Di consisting of"
★  All functional dependencies in D+ that include only attributes of Ri"

★  All multivalued dependencies of the form"
 α →→ (β ∩ Ri)"

 where α ⊆ Ri and α →→ β is in D+ "

©Silberschatz, Korth and Sudarshan!7.63!Database System Concepts!

4NF Decomposition Algorithm!

 result: = {R}; 
done := false; 
compute D+; 
Let Di denote the restriction of D+ to Ri"

 while (not done)  
 if (there is a schema Ri in result that is not in 4NF) then 
 begin"
" " let α →→ β be a nontrivial multivalued dependency that holds 
 on Ri such that α → Ri is not in Di, and α∩β=φ;  
 result := (result - Ri) ∪ (Ri - β) ∪ (α, β);  
 end  
 else done:= true;"

Note: each Ri is in 4NF, and decomposition is lossless-join"

©Silberschatz, Korth and Sudarshan!7.64!Database System Concepts!

Example!
■  R =(A, B, C, G, H, I)"
!F ={ A →→ B"
! !B →→ HI"
! !CG →→ H }"

■  R is not in 4NF since A →→ B and A is not a superkey for R"
■  Decomposition"
"a) R1 = (A, B) " " "(R1 is in 4NF)"
"b) R2 = (A, C, G, H, I) " "(R2 is not in 4NF)"
"c) R3 = (C, G, H) " "(R3 is in 4NF)"
"d) R4 = (A, C, G, I) " "(R4 is not in 4NF)"

■  Since A →→ B and B →→ HI, A →→ HI, A →→ I"
"e) R5 = (A, I) " " "(R5 is in 4NF)"
"f)R6 = (A, C, G) " "(R6 is in 4NF)"

©Silberschatz, Korth and Sudarshan!7.65!Database System Concepts!

Further Normal Forms!

■  Join dependencies generalize multivalued dependencies"
★  lead to project-join normal form (PJNF) (also called fifth normal

form)"
■  A class of even more general constraints, leads to a normal form

called domain-key normal form."
■  Problem with these generalized constraints: are hard to reason

with, and no set of sound and complete set of inference rules
exists."

■  Hence rarely used"

©Silberschatz, Korth and Sudarshan!7.66!Database System Concepts!

Overall Database Design Process!

■  We have assumed schema R is given"
★  R could have been generated when converting E-R diagram to a set of

tables."
★  R could have been a single relation containing all attributes that are of

interest (called universal relation)."
★  Normalization breaks R into smaller relations."
★  R could have been the result of some ad hoc design of relations, which

we then test/convert to normal form."

©Silberschatz, Korth and Sudarshan!7.67!Database System Concepts!

ER Model and Normalization!

■  When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not need
further normalization."

■  However, in a real (imperfect) design there can be FDs from non-key
attributes of an entity to other attributes of the entity"

■  E.g. employee entity with attributes department-number and
department-address, and an FD department-number → department-
address!
★  Good design would have made department an entity"

■  FDs from non-key attributes of a relationship set possible, but rare ---
most relationships are binary "

©Silberschatz, Korth and Sudarshan!7.68!Database System Concepts!

Universal Relation Approach!

■  Dangling tuples – Tuples that “disappear” in computing a join."
★  Let r1 (R1), r2 (R2), …., rn (Rn) be a set of relations"
★  A tuple r of the relation ri is a dangling tuple if r is not in the relation:"
" " "∏Ri (r1 r2 … rn)"

■  The relation r1 r2 … rn is called a universal relation since it
involves all the attributes in the “universe” defined by !
R1 ∪ R2 ∪ … ∪ Rn "

■  If dangling tuples are allowed in the database, instead of
decomposing a universal relation, we may prefer to synthesize a
collection of normal form schemas from a given set of attributes."

©Silberschatz, Korth and Sudarshan!7.69!Database System Concepts!

Universal Relation Approach!

■  Dangling tuples may occur in practical database applications."
■  They represent incomplete information "
■  E.g. may want to break up information about loans into:"

(branch-name, loan-number) "
(loan-number, amount) "
(loan-number, customer-name) "

■  Universal relation would require null values, and have dangling
tuples"

©Silberschatz, Korth and Sudarshan!7.70!Database System Concepts!

Universal Relation Approach (Contd.)!

■  A particular decomposition defines a restricted form of
incomplete information that is acceptable in our database."
★  Above decomposition requires at least one of customer-name,

branch-name or amount in order to enter a loan number without
using null values"

★  Rules out storing of customer-name, amount without an appropriate
loan-number (since it is a key, it can't be null either!)"

■  Universal relation requires unique attribute names unique role
assumption"
★  e.g. customer-name, branch-name"

■  Reuse of attribute names is natural in SQL since relation names
can be prefixed to disambiguate names"

©Silberschatz, Korth and Sudarshan!7.71!Database System Concepts!

Denormalization for Performance!

■  May want to use non-normalized schema for performance"
■  E.g. displaying customer-name along with account-number and

balance requires join of account with depositor!
■  Alternative 1: Use denormalized relation containing attributes of

account as well as depositor with all above attributes"
★  faster lookup"
★  Extra space and extra execution time for updates"
★  extra coding work for programmer and possibility of error in extra code"

■  Alternative 2: use a materialized view defined as 
 account depositor"
★  Benefits and drawbacks same as above, except no extra coding work

for programmer and avoids possible errors"

©Silberschatz, Korth and Sudarshan!7.72!Database System Concepts!

Other Design Issues!

■  Some aspects of database design are not caught by
normalization"

■  Examples of bad database design, to be avoided: "
"Instead of earnings(company-id, year, amount), use "
★  earnings-2000, earnings-2001, earnings-2002, etc., all on the

schema (company-id, earnings)."
✔ Above are in BCNF, but make querying across years difficult and

needs new table each year"
★  company-year(company-id, earnings-2000, earnings-2001,  

 earnings-2002)"
✔ Also in BCNF, but also makes querying across years difficult and

requires new attribute each year."
✔  Is an example of a crosstab, where values for one attribute

become column names"
✔ Used in spreadsheets, and in data analysis tools"

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

Proof of Correctness of 3NF
Decomposition Algorithm!

©Silberschatz, Korth and Sudarshan!7.74!Database System Concepts!

Correctness of 3NF Decomposition
Algorithm!

■  3NF decomposition algorithm is dependency preserving (since
there is a relation for every FD in Fc)"

■  Decomposition is lossless join"
★  A candidate key (C) is in one of the relations Ri in decomposition"
★  Closure of candidate key under Fc must contain all attributes in R. "
★  Follow the steps of attribute closure algorithm to show there is only

one tuple in the join result for each tuple in Ri"

©Silberschatz, Korth and Sudarshan!7.75!Database System Concepts!

Correctness of 3NF Decomposition
Algorithm (Contd.)!

Claim: if a relation Ri is in the decomposition generated by the "
above algorithm, then Ri satisfies 3NF."
■  Let Ri be generated from the dependency α →β"
■  Let γ → B be any non-trivial functional dependency on Ri. (We

need only consider FDs whose right-hand side is a single
attribute.)"

■  Now, B can be in either β or α but not in both. Consider each
case separately."

©Silberschatz, Korth and Sudarshan!7.76!Database System Concepts!

Correctness of 3NF Decomposition
(Contd.)!

■  Case 1: If B in β:"
★  If γ is a superkey, the 2nd condition of 3NF is satisfied"
★  Otherwise α must contain some attribute not in γ"
★  Since γ → B is in F+ it must be derivable from Fc, by using attribute

closure on γ."
★  Attribute closure not have used α →β - if it had been used, α must

be contained in the attribute closure of γ, which is not possible, since
we assumed γ is not a superkey."

★  Now, using α→ (β- {B}) and γ → B, we can derive α →B!
"(since γ ⊆ α β, and B ∉ γ since γ → B is non-trivial)"

★  Then, B is extraneous in the right-hand side of α →β; which is not
possible since α →β is in Fc."

★  Thus, if B is in β then γ must be a superkey, and the second
condition of 3NF must be satisfied."

©Silberschatz, Korth and Sudarshan!7.77!Database System Concepts!

Correctness of 3NF Decomposition
(Contd.)!

■  Case 2: B is in α."
★  Since α is a candidate key, the third alternative in the definition of

3NF is trivially satisfied."
★  In fact, we cannot show that γ is a superkey."
★  This shows exactly why the third alternative is present in the

definition of 3NF."
Q.E.D."

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

End of Chapter!

©Silberschatz, Korth and Sudarshan!7.79!Database System Concepts!

Sample lending Relation!

©Silberschatz, Korth and Sudarshan!7.80!Database System Concepts!

Sample Relation r!

©Silberschatz, Korth and Sudarshan!7.81!Database System Concepts!

The customer Relation!

©Silberschatz, Korth and Sudarshan!7.82!Database System Concepts!

The loan Relation!

©Silberschatz, Korth and Sudarshan!7.83!Database System Concepts!

The branch Relation!

©Silberschatz, Korth and Sudarshan!7.84!Database System Concepts!

The Relation branch-customer!

©Silberschatz, Korth and Sudarshan!7.85!Database System Concepts!

The Relation customer-loan!

©Silberschatz, Korth and Sudarshan!7.86!Database System Concepts!

The Relation branch-customer customer-loan!

©Silberschatz, Korth and Sudarshan!7.87!Database System Concepts!

An Instance of Banker-schema!

©Silberschatz, Korth and Sudarshan!7.88!Database System Concepts!

Tabular Representation of α →→ β!

©Silberschatz, Korth and Sudarshan!7.89!Database System Concepts!

Relation bc: An Example of Reduncy in a BCNF Relation!

©Silberschatz, Korth and Sudarshan!7.90!Database System Concepts!

An Illegal bc Relation!

©Silberschatz, Korth and Sudarshan!7.91!Database System Concepts!

Decomposition of loan-info!

©Silberschatz, Korth and Sudarshan!7.92!Database System Concepts!

Relation of Exercise 7.4!

